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Rupp, Cory J. (Ph.D., Mechanical Engineering)

Topology Optimization for Wave Propagation and Vibration Phenomena in Elastic and

Piezoelectric Solids

Thesis directed by Prof. Martin L. Dunn and Prof. Kurt Maute

Topology optimization is a versatile design tool for the synthesis of heteroge-

neous engineering systems where the optimal distribution of constituent materials is

sought such that a prescribed measure of performance is optimized. In this dissertation,

topology optimization methodologies are developed for solving problems associated with

wave propagation and vibration in elastic and piezoelectric media. These methodologies

utilize the finite element method in conjunction with gradient-based optimization algo-

rithms to create functional materials, structures, and devices. The methodologies are

demonstrated in a number of examples and illustrative studies that progress the state-

of-the-art in the fields of topology optimization, elastic waveguides, phononic band-gap

materials, and piezoelectric energy harvesting systems. These include the design of bulk

and surface wave elastic waveguides in two and three dimensions that guide various forms

of wave energy as desired, band-gap structures that provide tailored frequency transmis-

sion spectrums for bulk waves and surface waves, band-gap materials that prevent wave

propagation within certain frequencies, and piezoelectric energy harvesting systems de-

signed to optimize power output. Also addressed are previously unreported issues with

the application of topology optimization to these types of problems including the role

of physical phenomena in the solutions, mesh dependency effects, non-uniqueness, and

the impact of small feature sizes.
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Chapter 1

Introduction

1.1 Overview

Traditionally, heterogeneous materials and structures have been thought of in

terms of effective properties that describe the overall response to a load [111, 154]. In

static loading this is generally acceptable, but when elastic waves propagate through a

material or vibrations shake a structure then size effects must be considered. Specifi-

cally, when the wavelength of a propagating wave or a vibrating mode is on the order

of the feature sizes of the material or structure, many different phenomena can occur.

These may include the generation of different propagating modes, resonant effects and

interactions due to material interfaces such as Bragg reflections and mode conversion,

and electromechanical coupling in piezoelectric materials. Because of size effects, general

macro-scale analyses of effective properties, which do not account for these phenomena,

may be invalid. Far from being a hindrance, many of these effects are in broad use in

many common devices today such as resonators and signal filters in cell phones, mod-

ulators in fiber optic systems, ultrasonic wave generating and receiving equipment, and

energy harvesting systems. Many of these technologies have been enabled by advances

in nano- and micro-manufacturing allowing the fabrication of heterogeneous material

systems (devices and structured materials) with precise positional control of the con-

stituent materials. Taking advantage of this progress, one can envision the design of

heterogeneous materials where the specific interaction of waves and vibration with the
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material structure is considered to yield some arbitrary and desired objective such as

the guiding of wave energy or the conversion of vibrations into electrical energy. The

more complex this objective is, however, the more quickly the limits of human imagi-

nation and capabilities are reached. As such, there remains a need for a rational design

methodology that enables an engineer to systematically develop wave propagation and

vibration materials and structures of arbitrary complexity.

Since the initial work by Bendsøe and Kikuchi [10], topology optimization has

proven itself as a promising tool for the design of complex devices and structures. Ap-

plications span all fields of engineering [11], but are quite limited in scope when it comes

to wave propagation problems. The study of elastic wave propagation topology opti-

mization problems can be divided into two areas: waveguides and band-gap materials.

Waveguides generally concern the guiding of wave energy from one location to another

while maintaining the strength and integrity of the signal. Band-gap materials are struc-

tured materials that prevent certain wave frequencies from passing through them while

allowing others. Cox and Dobsen [29, 30] first exploited the potential of topology opti-

mization for the design of photonic band-gap materials while Sigmund and Jensen [146]

later used it for the design of elastic waveguides. Upon implementation, waveguides

created using topology optimization have been shown to function as much as 10 times

more efficiently and with increased bandwidth over conventional designs [14, 53]. Many

facets of the topology optimization problem for wave propagation and vibration such as

the influence of different wave modes or mesh dependency, however, have not yet been

studied or reported in the literature though they are necessary to fully understand the

problem.

In a particular application of topology optimization to systems with piezoelec-

tric materials, a number of actuators and sensors have been optimally designed and

methodologies developed [34, 59, 158], although the vast majority of these are for static

applications. Topology optimization of dynamic piezoelectric systems, however, is still
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a rich and understudied field with many promising applications. A large segment of this

field focuses on vibrating piezoelectric energy harvesting systems. These systems use

piezoelectric materials to convert ambient vibrations into electrical energy. Much of the

design focus for these systems is on the harvesting structure where the electromechanical

coupling through the piezoelectric material is be optimized to produce as much energy

as possible [45, 91]. Separate optimizations on the electrical harvesting circuit have also

been performed [104, 123, 140]. A methodology for the simultaneous optimal design of

both the dynamic harvesting structure and circuit, however, is absent from the litera-

ture. Also missing from the dynamic piezoelectric systems field is a methodology for the

use of topology optimization for waveguides and band-gap materials with piezoelectric

materials.

With these systems in mind, the aim of this research is to develop and expand

analysis and design methodologies using topology optimization for the generation of

heterogeneous elastic and piezoelectric materials and structures subject to wave prop-

agation and vibration. To this end, this dissertation focuses on topology optimization

as applied to three areas: elastic waveguides, elastic band-gap materials, and wave

propagation and vibration in piezoelectric solids.

1.2 Contributions

This dissertation contributes to the state-of-the-art in the following areas:

Topology optimization of elastic waveguides

Much of the initial and continuing work in this area has focused on various new

applications of the topology optimization technique to useful elastic waveguide struc-

tures. The technique is generally established, although the vast majority of studies have

neglected to investigate the underlying mechanisms and physical reasoning behind the

designs they obtain. It is suggested that the wave phenomenon of Bragg reflections is the

primary design driver for these problems and the reason for clear “0-1” solutions. It is
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shown here that, while this may be true, other effects also play an important and unex-

pected, but sensible, role including localized material dispersion and anisotropy caused

by material feature sizes smaller than the wavelength. This work provides a more in-

depth investigation and development of the methodology than what is currently present

in the literature for topology optimization of elastic waveguides. This methodology is

also applied to previously unexplored aspects of topology optimization with wave prop-

agation, namely mode conversion, surface waves, three-dimensional waveguides, and

thin-film configurations.

Topology optimization of elastic band-gap materials

The design of band-gap materials via topology optimization is a relatively under-

studied field with few reported investigations into the needs, restrictions, and design

drivers for the problem. The work presented here attempts to bring to light and an-

swer some of the outstanding questions in the field including the efficacy of single-band

objective functions and the presence of local optima in the problem. The shortcomings

of previously developed objective functions such as the ability to only passively cre-

ate a band-gap and the requirement to have a pre-existing band-gap are discussed and

an improved methodology is presented. This new framework is applied to a series of

previously unstudied optimization problems including: surface wave, plate, and three-

dimensional wire band-gap problems as well as the design of a specialized mode filtering

material that filters bulk waves based on the incident mode of propagation.

Topology optimization of wave propagation and vibration in piezoelec-

tric solids

The field of vibrating piezoelectric energy harvesting systems is a relatively mature

field in terms of analysis capabilities and simple design concepts. The designs of the

harvesting structures, however, have generally been limited to uni-morph or bi-morph

cantilever beams with end masses used to match the beam natural frequencies to the host

vibration signature to maximize the available energy that can be converted to electricity.
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Topology optimization of piezoelectric structures has also been previously reported, but

not for a vibrating structure connected to an electrical energy harvesting circuit. This

work fills this gap by developing a methodology for the design of piezoelectric energy

harvesting structures and their external harvesting circuits with the goal of improving

energy harvesting capabilities in a wide range of scenarios such as the use of arbitrarily

shaped harvesting structures or systems with strict mass constraints. The methodology

enables the design of arbitrarily layered and shaped piezoelectric structures while also

accounting for both structural and electrical dynamic effects. In addition to piezoelectric

energy harvesting, specialized elastic waveguides and band-gap structures composed of

piezoelectric materials are also developed that have the previously unreported property

of being able to completely turn on and off through presence or absence of an electric

field and a spatially varying piezoelectric polarization.

1.3 Dissertation Organization

This dissertation is organized as follows. Chapter 2 introduces the three types

of problems addressed in this document and gives background into the phenomena and

current applications of each. Chapter 3 provides an overview of existing design method-

ologies for each problem and details the formulation and use of topology optimization as

a design tool for them. Chapter 4 explores the first of these problems, namely topology

optimization of elastic waveguides, presenting analysis techniques and the application

of topology optimization with examples. Relevant studies and observations are also dis-

cussed. The next two chapters have similar structure and address topology optimization

as applied to the topics of band-gap materials in chapter 5 and wave propagation and

vibration in piezoelectric materials in chapter 6. Chapter 7 summarizes the findings

in this document and outlines some future studies that could further expand the work

presented herein.
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Chapter 2

Background

2.1 Introduction

This chapter provides background on the various physical phenomena that exist

in the fields of wave propagation and vibration in elastic and piezoelectric structures

and how these phenomena are used in applications today. The chapter begins with an

examination of many phenomena in wave propagation including the various modes of

propagation, how they interact at material interfaces and in periodic structures, and

how they can be converted into different forms. Next, piezoelectricity is discussed with

its influence on wave propagation and its interaction with electroded structures. The

chapter is then finished with an overview of many of the applications in which these

phenomena are used.

2.2 Phenomena in wave propagation and piezoelectricity

Devices utilizing wave propagation and vibration in elastic or piezoelectric solids

typically make use of one or more of the following phenomena. Special attention is paid

here because these are the physical design drivers for the topology optimization process

that is the focus of this dissertation. Telltale signs of these phenomena at work can be

seen in the many examples of the following chapters.
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2.2.1 Phenomena in wave propagation

Modes of propagation

The manner in which elastic wave energy propagates comes in a variety of fla-

vors. In homogeneous, infinite, isotropic media waves are called bulk waves and come

in three forms: pressure (P) or longitudinal waves and two polarizations of shear (S) or

transverse waves. The pressure mode displaces the media in the same direction as that

of propagation and has a propagation speed of
√

(λ+ 2µ)/ρ, where λ and µ are the

Lamé coefficients and ρ is the mass density. The two shear modes, which are identical

in form but independent in orientation, exhibit displacements perpendicular to that of

the direction of propagation. In three dimensions there are two independent perpendic-

ular directions for any propagation direction and thus two independent shear modes.

These are commonly distinguished by calling them SV (shear vertical) and SH (shear

horizontal) modes, which correspond to the in-plane and out-of-plane polarizations, re-

spectively. The speeds of propagation of these two waves are identical and equal to

√

µ/ρ, which is always smaller than the longitudinal wavespeed for real, homogeneous

materials with Poisson’s ratio 0 ≤ ν < 0.5. Material anisotropy can drastically alter the

way these waves travel, both in form and function. In isotropic media the phase velocity

(speed and direction of peaks and troughs and here generally referred to as wavespeed)

and group velocity (speed and direction of energy propagation) are equal in magnitude

and constant for all directions, but in anisotropic media this is not necessarily true. For

example, the wavespeed for pressure waves change by 250% with a change of propaga-

tion direction in highly oriented graphite-epoxy composite. The effect of anisotropy is

often represented in a slowness curve, which is a plot of the inverse of phase velocity for

each mode as a function of propagation angle (see Figure 2.1). In isotropic media, the

slowness curve is just a series of circles (Figure 2.1a) with the inner circle representing

the pressure wave and outer circle (actually two overlaid circles) representing the two
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shear modes. The slowness curve in the orthotropic plane of graphite-epoxy composite

(Figure 2.1b), however, shows a highly skewed quasi-pressure wave curve surrounded by

the two quasi-shear modes. These modes are called quasi-modes because unlike their

isotropic mode counterparts, the direction of displacement is not necessarily parallel or

perpendicular to the direction of propagation.
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Figure 2.1: Slowness curves for (a) isotropic silicon and (b) an orthotropic graphite-

epoxy composite. Only a quarter of the curves are shown because of symmetries.

Surface modes represent a second flavor of elastic waves that occur only in the

presence of a free surface. Surface waves have the unique and often desirable property

that the energy of propagation is constrained to the free surface and decays in only

two-dimensions as 1/
√
r from a point source, with r being the distance from the source,

rather than the better known 1/r2 spatial decay rate of three-dimensional bulk waves.

The most common type of surface wave is the Rayleigh wave. The displacements of this

wave are coupled, occurring in the direction of propagation and the depth direction, and

vary as a function of depth away from the surface in the manner show in Figure 2.2. In

an isotropic material, the wavespeed is slightly slower than that of the shear bulk wave,

is non-dispersive, and is dependent upon the Poisson’s ratio of the material only. If
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anisotropic or piezoelectric media or surface variations are considered, then a number of

other surface waves can exist including shear acoustic surface waves in some anisotropic

media (shear ASW), Bleustein-Gulyaev waves (BGW) in piezoelectric materials, and

surface shear waves (SSW) in geometries with corrugated surfaces [3, 64]. Similar to

bulk waves, the phase and group velocities as well as the form of the wave can depend

on direction.
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Figure 2.2: Rayleigh wave displacements in the x- (dashed) and y- (solid) directions as

a function of depth normalized to the vertical displacement at the surface. The wave is

propagating in the x-direction and attached to the free surface at z
λR

= 0.

Naturally, as is the case with surface waves, when one or more changes are made to

the boundary conditions of the propagating medium then other mode types can appear.

For example, wave propagation in an infinite plate yields plate waves, also known as

Lamb waves, which propagate along the length of the plate in either symmetric or anti-

symmetric modes (see Figures 2.3a and b). These modes are dispersive, meaning that

the group velocity is a function of frequency or wavenumber and also that the group

and phase velocities are not necessarily equivalent. A peculiar property of Lamb waves

is the realization of a negative group velocity for a certain range of frequencies/wave

numbers meaning that while the peaks of the wave propagate in one direction, the energy
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propagates in the other, a potentially desirable result. Plate geometries also exhibit SH

shear plate modes, which are akin to SH shear bulk waves in that the displacement

is normal to the viewing plane. Both Lamb and SH shear plate waves are families of

related modes for which there may be many modes of each type existing at the same

time, depending on the frequency of excitation and the wavenumber. Another notable

and related form of wave propagation exists within a layer on a substrate of a different

material and is called a Love wave. This type of wave exists when SH waves are“trapped”

inside the layer due to total internal reflection as shown in Figure 2.3c. These waves are

closely related to SH shear plate waves. At a material interface another mode, called the

Stoneley wave, can exist. These waves, like many other specialized subgroups of wave

types, only exist when certain conditions such as the adjacent media having sufficiently

similar shear wave velocities in this case. A more detailed explanation of all these wave

types can be found in a number of sources [3, 50, 62].

(a)

(b)

(c)

Figure 2.3: Propagation modes for (a) symmetric and (b) anti-symmetric Lamb waves

in a plate and (c) Love waves which are caused by an SH wave trapped in a layer on a

substrate. The arrow shows the direction of wave propagation with wavenumber k.
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Reflection and transmission

Arguably the most important phenomena in wave propagation are wave reflection

and transmission at a material interface. When a wave encounters an interface between

two different media, some of the wave energy is transmitted and the rest is reflected. The

amount of energy that gets transmitted/reflected depends on the material properties of

the two media, specifically a value called the characteristic acoustic impedance Z. This

value is dependent on the density ρα of the material α and the wavespeed cα such that:

Zα = ραcα α = 1, 2 (2.1)

When a wave travels through a material with impedance Z1 and encounters a material

with impedance Z2 the wave will interact with a reflection coefficient r and transmission

coefficient t such that:

r =
Z1 cos θi − Z2 cos θt
Z1 cos θi + Z2 cos θt

(2.2)

t =
2Z1 cos θi

Z1 cos θi + Z2 cos θt
(2.3)

for a given incident angle θi and transmitted angle θt related by Snell’s law:

sin θi
c1

=
sin θt
c2

. (2.4)

These coefficients correspond to the reflection and transmission ratios of wave amplitude

at the material interface. The reflectivity R and transmissivity T of energy take a

different form:

R =

∣

∣

∣

∣

Z1 − Z2

Z1 + Z2

∣

∣

∣

∣

2

(2.5)

T =
4Re(Z1Z2)

|Z1 + Z2|2
= 1−R (2.6)

for normal incidence where the norm |·| and real operator Re(·) are present because in

some situations it is useful to use a complex impedance to represent material energy

losses. These expressions are only valid for a single mode of propagation at a time and

may be different for different modes. Note that a couple special cases yield sanity checks
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for these equations; for example the free and rigid boundary conditions. For the free

boundary condition, the free space at the boundary has an impedance Z2 = 0 and so

the reflection coefficient is unity for all angles and although the transmission coefficient

is t = 2, the transmissivity for energy is T = 0, so it is not contradictory. In the case

with a rigid boundary the rigid impedance is Z2 =∞ for which the reflection coefficient

is −1 (which takes into account the change in phase) and transmission coefficient limits

to zero while their energy counterparts are the again unity and zero. Both cases make

sense because all the energy is reflected at the interface as is expected. In the gen-

eral case at normal incidence, it can be found that the reflectivity is maximized when

the difference in impedance between the two materials, also known as the impedance

mismatch, is maximized which correspondingly minimizes the transmissivity. Accord-

ingly, the reflectivity is minimized and transmissivity maximized when the impedance

mismatch is as small as possible (i.e. the materials look similar from the wave’s perspec-

tive). This, however, changes with varying angle because Snell’s law can break down for

c2
c1

sin θi > 1, a condition for which total reflection occurs, although an evanescent wave

(non-propagating, decaying wave) can appear on the transmitted side of the interface.

Bragg reflections

An elastic band-gap, or phononic, material is a micro-structured material that

exhibits the property that elastic waves of certain frequencies will not pass through the

material. The idea behind band-gap materials stems from the dispersion relationship

for a structured composite material. The dispersion relationship is the relationship

between frequency and wavevector for a wave traveling through a medium, usually

shown in a dispersion diagram that reveals the allowable modes of propagation. In

infinite, homogeneous, isotropic media, the modes of propagation consist of the three

bulk modes (P, SV, and SH waves). Figure 2.4a shows a dispersion diagram for a

typical bulk isotropic material. The dispersion diagram for a band-gap material, in

which there exists a range of frequencies, or a band, for which no modes of propagation
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exist, seen in Figure 2.4b. The existence of this forbidden band is based solely on the

structural layout of the composite material, while the form of the band-gap and the rest

of the dispersion relationship is additionally dictated by the properties of the constituent

materials. Information other than the presence of band-gaps can also be obtained from

the dispersion diagram, including the phase velocity vp = ω/k and the group velocity

vg = ∂ω/∂k, which is the slope of the line in the diagram, making it an important source

of information.
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Figure 2.4: Example dispersion diagrams for (a) typical bulk isotropic and (b) band-

gap materials where Γ, X, and M are wavevector values/directions for symmetry points

in the band-gap material. Modes of propagation exist only when there is at least one

wavevector for a corresponding wave frequency.

One of the most fundamental concepts about band-gap materials and structures

is that of the Bragg condition:

kΛ = mπ (2.7)

where k is the wavenumber, Λ is the lattice constant, and m is an integer. This equation

dictates the condition under which a wave will interfere constructively/destructively

and be reflected within the material in which it is propagating. For a one-dimensional

periodic material, it reveals that a band-gap occurs when the half-wavelength of the
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propagating wave is an integer multiple of the lattice constant which is the length scale

of the smallest repeatable unit within the material (also called the unit cell). These

structures are commonly called Bragg gratings for which the wave that the travels

through them undergoes Bragg scattering or Bragg reflections. The equation also implies

that there are an infinite number of band-gaps for a given lattice constant. For large m,

however, they become indistinguishable from each other, a phenomenon more commonly

found and studied in quantum mechanics.

As an example of the Bragg scattering in a Bragg grating, consider a one-dimensional

grating N unit cells in length. The reflectivity |rN |2 for a wave with wavevector k trav-

eling through the grating can be found via the transfer matrix method as:

|rN |2 =
|γ|2

|γ|2 +
(

sin(kΛ)
sin(NkΛ)

)2 (2.8)

where γ is related to the reflectivity of a single unit cell |r1|2 by:

|γ|2 =
|r1|2

1− |r1|2
(2.9)

Figure 2.5 shows the reflectivity of the Bragg grating |rN |2 for three values of N and

a unit cell reflectivity |r1|2 = 0.05. It is easy to see from the plots that the reflectivity

approaches unity when the Bragg condition is met. Also, it is clear that increasing N

results in increased reflectivity as well as narrower band-gaps. The Bragg condition is a

recurring theme in wave propagation and its presence can be inferred later in examples

of not only band-gap materials but also in waveguide structures.
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Figure 2.5: Reflectivity of a Bragg grating for various numbers of unit cells: (a) 5, (b)

10, and (c) 100. Band-gaps can clearly be seen where the Bragg condition is met while

increasing the number of unit cells increases the reflectivity at these locations.

Mode conversion

Reflection and transmission of waves can be complicated through mode conver-

sion in which one mode incident upon an interface may disassociate into a mode of its

own type as well as other modes. For example, a pressure wave incident on an interface

at an angle will split into instances of both reflected and transmitted pressure and shear

waves with the total energy divided between them. As such, reflection and transmission

coefficient relationships are highly dependent on the incident angle and mode type. In

anisotropic materials the complexity of mode conversions and reflection and transmis-

sion increases significantly. An incident wave of any type (P, SV, SH) can reflect and

transmit into all three of the mode types and the acoustic impedance is also a function of

propagation angle and material orientation. Derivations of many of these relationships

as well as specific examples can be found in Auld [3].

2.2.2 Piezoelectricity

Piezoelectric effect

Piezoelectric materials are a class of materials in which the atomic structure

of the material is such that when strained an electric field is produced. This effect,
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called the direct piezoelectric effect, also has a reciprocal effect, called the converse

piezoelectric effect, where a piezoelectric material subject to an electric field, usually

actuated through a voltage applied to electrodes, will produce a strain in the material.

Together, these effects fully couple the mechanical response to the electrical response

for any system that uses piezoelectric materials. The constitutive law that depicts this

coupling is written as:

T = cE : S− e ·E

D = e : S + ǫS ·E
(2.10)

where T is the stress field, cE is the constitutive stiffness matrix for constant electric

field, S is the strain field, e is the piezoelectric strain tensor, E is the electric field, D is

the electrical displacement field, and ǫS is the permittivity matrix for constant strain.

Wave propagation in piezoelectric materials

In a piezoelectric material, because the strain field is coupled with the electric field,

any wave that passes through the material travels differently than it would through

an uncoupled material. In addition to the coupled fields, piezoelectric materials are

anisotropic, so a number of different wave modes can appear just on that basis. Gener-

ally, any mechanical wave is accompanied by a parasitic electromagnetic wave with the

same propagation direction and vice-versa. These are called quasi-acoustic and quasi-

electromagnetic waves, respectively, and have slightly altered wavespeeds. This change

in wavespeed, however, is very small, primarily because of the difference in propagation

speeds between elastic and electromagnetic waves. In some cases an elastic wave will

not create an electromagnetic field and will instead create an electric field only in either

the propagation direction or normal to the propagation direction. In the “3-1” class of

piezoelectric materials, which are considered in this document, a wave traveling in the

“1-direction” creates a perpendicular alternating electric field in the “3-direction” whose

energy may be gathered or transferred elsewhere. Further details on wave propagation

in piezoelectric materials can be found in Auld [3].
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Charge cancellation in piezoelectric structures

In the operation of dynamic structures, strain varies as a function of location.

In piezoelectric structures this means that distributions of positive and negative charge

are also present, which, if connected through electrodes, will cancel to produce zero net

charge. For example, an elastic wave traveling through an electroded “3-1” piezoelectric

plate will produce alternating areas of positive and negative charge that are carried

through the electrode and cancel each other out resulting in a net zero voltage across

the electrodes. Similarly, in vibrating piezoelectric energy harvesting structures, the

excited mode shape will produce regions of positive and negative strain whose charges

will cancel if connected by the same electrode. This effect is noted in the papers of

Erturk and Inman [40] and Erturk et al. [45], who, in their investigations of strain nodes

(where strain changes sign), find that if an electrode crosses the strain node then charge

cancellation occurs, degrading the performance of the piezoelectric harvester. This

finding was also reported by Kim et al. [91, 92] for circular plates. In these studies, the

authors rectify the charge cancellation by either segmenting the electrodes or changing

the piezoelectric polarization to match the strain state. Doing so allows energy to be

harvested from both tensile and compressive strain regions without cancellation. In

general, it is best to avoid charge cancellation in order to maximize performance of a

device.

2.3 Applications

Outlined here are a number of existing applications for wave propagation and

vibrations in elastic and piezoelectric solids and structures. Specifically, applications

in the areas of elastic waveguides, band-gap materials, and vibrating energy harvesting

systems are considered.
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2.3.1 Elastic waveguides and band-gap materials

Elastic waveguides and band-gap materials share many physical phenomena and

therefore have many mutual applications. In fact, one of the primary uses of band-gap

materials is to create waveguides by introducing line defects, a design method that will

be discussed in more detail in the next chapter. Outlined here are some of the many

applications of these closely related structures.

Ultrasonics

One of the major uses of general wave propagation is in ultrasonic inspection and

characterization. Ultrasonics is defined to be the study of the propagation of acoustic

waves at frequencies above the range of human hearing (i.e. you would need ultra-

hearing to hear the waves) all the way up to about 1GHz at which point it is generally

called hypersonics. Ultrasonic waves are usually actuated by piezoelectric transducers

that use piezoelectric materials and the piezoelectric effect to convert an electric signal

into an acoustic signal. Many types of transducers exist, including bulk wave (both

pressure and shear modes) transducers and surface wave transducers, just to name the

most common types. These can come in pulse mode or harmonic mode variations.

Lasers are also used as a non-contact source of acoustic energy through the use of the

thermo-acoustic effect. A laser incident on a surface heats the local area causing it to

expand and create an acoustic pulse. The laser can also be modulated to create a wave

of a certain frequency or frequencies. Both piezoelectric transducers and lasers are also

used as acoustic sensors with transducers again using the piezoelectric effect to change

an acoustic signal into an electric signal and lasers using interferometry techniques. An

overview of various transducers types and their specific applications can be found in

Cheeke [22].

Ultrasonic inspection is used in many different fields for a large variety of purposes.

The field of nondestructive evaluation (NDE) is based upon using ultrasonics to test and
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evaluate the condition of materials and structures. In its simplest form, a transducer

is used to introduce an acoustic wave pulse into a material and sense any reflection of

the wave off interfaces within the material whether it be another surface, a material

interface, or an unwanted crack or defect. By timing the signals, the location of these

features can then be determined and defects can be distinguished from otherwise known

interfaces. For example, if a signal returns before it is expected then a defect is usually

present. These very same techniques are used in medical ultrasonic imaging in which

a transducer sends and receives an acoustic wave that gets distorted and reflected as it

travels through variations in the composition of the human body. The variations in the

signal can then be used to construct a diagnostic image of the organs. Another medical

procedure that uses ultrasound is the breakup of kidney and gallstones in the body

that often cause much pain in patients. For this procedure, a high intensity ultrasonic

beam is focused upon the stone, which under high acoustic intensity breaks up into

smaller pieces thereby allowing the body to pass the stone and relieving the patient of

pain. A similar procedure is also used in manufacturing processes to machine and drill

materials as well as to create joints using ultrasonic soldering and welding. The focusing

of an ultrasonic beam to a point is also used in ultrasonic microscopy which functions

in the same way as a light microscope but with acoustic waves rather than light waves.

Ultrasonic microscopy is often used to create micro-scale subsurface images of opaque

materials that would otherwise be unseen. It is also used to characterize the material

properties of various bulk materials, but at a small scale and using only a small sample.

Sensors

When an acoustic wave passes through a changing environment, the manner in

which wave itself propagates also changes. This is the basis of detection methods used in

acoustic sensors to detect physical, biological, or chemical changes in an environment.

Changes in wave propagation characteristics are usually sensed by using transducers

to send and receive a known acoustic signal through an environment of interest. If
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the received signal changes in frequency, phase, or amplitude relative to some reference

state, then it is known that the environment has also changed. For example, some

sensors place a thin reactive film on a substrate that reacts with a specific molecule

(a chemical of biological agent) that may or may not be present in the environment.

The presence of the molecule will change the characteristics of the film through mass

loading or elasticity effects, thereby altering the acoustic signal that passes through it.

The change in signal, conversely, indicates the presence of that specific molecule thereby

completing the role of the sensor. This idea is very basic, but the implementation is

much more technical. For example, some modes of propagation are less sensitive than

others to changes such as mass loading or changes in elastic constants. For sensors built

with a thin film sensing medium coating a substrate, bulk modes are rather insensitive

to mass loading, but Lamb modes and surface wave modes can be approximately 30

times more sensitive [22]. As a result, many very specific types of sensors utilizing

specific wave propagation modes have been developed that use a variety of methods to

sense changes in the environment. Other examples of sensors other than chemical and

biological agent sensors include density, viscosity, temperature, flow, and level sensors.

Signal processing

Electronic circuits are increasingly being integrated with elastic wave based de-

vices that allow them to perform a wide variety of functions that would otherwise not be

possible. Examples of such devices are surface acoustic wave (SAW) filters, delay lines,

SAW resonators, oscillators, coded time domain structures, convolvers, and multistrip

couplers [22]. Technologies that these devices are used in include radios, mobile phones,

garage door openers, and fiber optic repeaters. Many of these devices utilize Rayleigh

waves created by interdigital transducers (IDT). An interdigital transducer consists of

a periodic array electrodes placed on a piezoelectric substrate, essentially creating a

band-gap structure. It works by applying a voltage signal to the electrodes, which in

turn create a spatially varying strain field through the converse piezoelectric effect. Nu-
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merous IDT designs exist, each trying to increase or decrease effects or noise in the

resulting elastic wave. The SAW resonator, as an example, has two IDTs (one to create

the wave and one to receive) often separated by a periodic array of reflecting lines of a

different material (a Bragg grating). The characteristics of this device can be altered by

changing either the configuration of the IDTs or changing the Bragg grating properties.

The focus of many studies has been to optimize the form, strength and directionality

of the elastic waves created by the IDTs [119] or in some cases to use different wave

modes such as Stoneley waves [88]. Another application is to use acoustic waves to

influence the propagation of light. Examples of devices that do this include the Mach-

Zehnder interferometer (based on acoustic wave induced changes in light wavespeed

causing constructive and destructive interference of two coherent beams) and acousto-

optic modulators (based on Brillouin scattering, a phenomenon akin to Bragg scattering

and Bragg gratings, but where changes in material refractive index are caused by the

propagation of an acoustic wave). These devices are used to modulate signals in laser

systems, where an electric signal is converted into an acoustic signal and then into an

optic signal, generally for use in fiber optic communication.

Band-gap material applications

A disparate array of applications for band-gap materials are either in use or

have been suggested. Acoustic fibers, the acoustic analogue to crystal fibers in optics

(electromagnetic waveguides), are used as a means to guide acoustic waves across large

distances with low loss and low dispersion with applications as delay lines or as a means

to carry an acoustic signal to a remote sensor. Band-gap materials are also used to reduce

acoustic noise, for both vibration isolation and architectural applications [94, 133]. In

promising future applications, band-gap materials have been proposed to create acoustic

invisibility and negative refraction. The concept of invisibility, focused primarily in

the field of photonics, but slowly moving into phononics, concerns the development of

so-called negative refraction index or left-handed materials. These special materials
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theoretically have the ability to create spheres of invisibility that can render an object

invisible to outside detection [32, 114, 126] or superlenses that can breach the wave-

focusing diffraction limit [115, 125, 162]. They are created by introducing localized

resonances within the material structure and are often called meta-materials. Also of

interest is the use of band-gap materials as so-called hypersonic phononic crystals that

affect the flow of high frequency thermal phonons, which in turn changes the thermal

properties of the material [61].

2.3.2 Vibrating piezoelectric energy harvesting systems

The use of piezoelectric materials incorporated into structures to harvest energy

from ambient vibrations has received significant attention over the last decade with the

overarching goal of eliminating or reducing the need of external power sources or bat-

teries to power remotely operated devices. The interest in vibrational energy harvesting

has been motivated by advances in low-power electronic components such as wireless

sensors for structural health monitoring and tire pressure sensors, actuators that can

be powered remotely, and by the need for supplemental energy sources for unmanned

aerial vehicles [46]. Additional motivation is provided by the desire to develop such

devices with simultaneous structural and power generation functionality, which can re-

duce weight, material usage, and costs. The interest in piezoelectric energy harvesting

is reflected in a number of authoritative reviews that have been written in recent years

[2, 7, 28, 37, 43, 129, 147]; extensive details regarding applications, experimental tech-

niques, and modeling and design approaches can be found within these references.
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Chapter 3

Design Methodologies

3.1 Introduction

This chapter outlines some of the existing design methodologies used today to cre-

ate elastic waveguides, band-gap materials, and piezoelectric structures. These range

from simple trial-and-error procedures to highly automated topology optimization tech-

niques. Special focus is given to topology optimization including a detailed description

of the general theoretical and computational framework. The chapter starts with a

review of the existing design methods, then describes the topology optimization frame-

work including general sensitivity analysis, and ends with examples of how topology

optimization has been used in the field to date.

3.2 Existing design methods

This section provides an overview of the design methods for waveguides, band-

gap materials, and piezoelectric structures. Through many decades these methods have

changed and evolved starting with designs based on macro-scale flow engineering and

phenomena to now creating customized micro- and nano-structured devices and mate-

rials that perform very specific functions.
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3.2.1 Elastic waveguides and band-gap materials

Waveguides

Long before acoustics was commonly considered a self-encompassed field a number

of inventions involved the use of acoustic waveguides. Examples include a number of

musical instruments, namely the woodwinds and brass, the horn shaped hearing devices

of the early 19th century, and sound lines to carry voice commands between decks of

a ship. These first acoustic waveguides were likely viewed as flow channels for sound.

They were simple and relied primarily on having high reflection coefficients caused by

adjacent materials with high impedance mismatches to create total internal reflection

and keep the wave contained within the waveguide (e.g. air surrounded by a metal horn

or tube).

Similar techniques have since been developed for the creation of elastic waveg-

uides. The easiest way to do this is to use a long thin rod in air or a vacuum. The high

impedance mismatch contains the various elastic wave modes that a rod can support

with its geometry, again using total internal reflection. Gentle curves can be created in

these waveguides to change the direction of the wave, but only if the radius of curvature

is much greater than the wavelength (at least 10 times), otherwise the waveguide will

leak or reflect acoustic energy [22]. This is a key point and one of the major limitations

for this type of waveguide. Other related issues include the presence of dispersion, which

occurs in most non-bulk wave modes. Efforts to overcome dispersion in such waveguides

have resulted in the design of capillary and fiber waveguides which function in a similar

way as fiber optic lines [22].

Other geometries can also be used for waveguides, most of which use variations

in geometry or material composition to contain one or many mode types. Examples

include creating a ridge or wedge on the substrate of the same material or building a

strip or slot of a different material on the substrate (see Figure 3.1). These waveguides,
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called topographic waveguides, rely primarily on the presence of propagation modes that

are a direct consequence of the existence of those features (e.g. plate-like modes in ridge

waveguides). As a result, these guided modes are strongly attached to the geometry

variation and the wave will follow any change in course of the geometry. The cross-

sectional shape of the waveguide and the mode of propagation highly affects whether or

not the propagation is dispersive, attributing some waveguides with much more desirable

properties than others.

(a) (b) (c)

(d) (e) (f)

Figure 3.1: Waveguide types: (a) capillary or fiber, (b) ridge, (c) wedge, (d) strip, (e)

slot, (f) shorting strip.

Another class of waveguides, called overlay waveguides, involve placing a layer of

different material on a substrate in various configurations in order to create material

interfaces and change the local properties. In the case of the strip waveguide, when

the strip has a sufficiently lower wavespeed than the underlying substrate, Love waves

become trapped in the layer and are then guided by it. This, however, is also dependent

on the dimensions of the strip. For strips of low height and high wavespeed, the Rayleigh

wave velocity is slowed locally thereby trapping Rayleigh waves in the local area under

the strip. The slot waveguide works in the same fashion but the area under the strip

has a faster Rayleigh wave velocity. If the substrate happens to be piezoelectric and the
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overlaying strip a metal, then a variation of a piezoelectric Rayleigh wave forms and is

guided by the metallic strip. Auld [3], who also discusses anisotropic waveguides, and

Cheeke [22] both give good overviews of these types of waveguides.

As mentioned briefly in the last chapter, the development of two-dimensional

band-gap materials resulted the invention of a new class of waveguides based on band-

gap materials. While the presence of a band-gap material prohibits the propagation

of wave energy through the material within a certain frequency range, it is also true

that the absence of that material allows the wave to pass. More importantly, it has

been shown that defects in band-gap materials allow for localized states (propagating

and non-propagating) within the band-gap to exist even though it would normally be

prohibited [87]. When defects are organized into lines, such as by removing a row of

inclusions in the host matrix, then line defect waveguides are formed. Joannopoulos et

al. [87] was one of the first to show this with photonic crystals and Sigalas [144] later

did the same for phononic crystals.

The simplest line defect waveguide is of course a straight waveguide, which in

some situations can serve as a delay line. Of more interest are various bending waveg-

uides. These waveguides are used in optics as well as ultrasonics and signal processing

to guide wave energy to a desired location. Such devices have been found to be more

efficient and more compact than their total internal reflection based counterparts. For

example, 90◦ bend photonic/phononic crystal waveguides are capable of bending light

in the space of only about a wavelength, a drastic improvement when compared to the

tens of wavelengths needed for traditional waveguides [87]. One drawback of these de-

signs, however, is that the properties of the bending waveguide are highly dependent on

the array and defect characteristics [26]. As a result, designing a photonic or phononic

waveguide has developed into an effort to create the lowest loss, highest bandwidth

combination of crystal arrays and defects, which is usually done by moving the defect

lines or changing defect shapes through a trial and error method (e.g. [27]). In addi-
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tion to waveguides, band-gap materials have also used the same techniques to create a

number of special function waveguide devices such as multiplexers and demultiplexers,

filters, modulators, and switchers [21, 127, 128] which are useful in signal processing

applications. Most of these applications have been created for the field of photonics for

which Prather et al. [128] give a nice history. The field of phononics on the other hand

is much less developed, partly due to the increased complexity in the physics as well as

the less immediately apparent advantages.

Band-gap materials

Early investigations into the band-gap phenomenon in spatially periodic struc-

tures focused on naturally occurring structures, usually of biologic origin, with peculiar

optical properties. Early observations of iridescence, a band-gap caused phenomena,

were reported in chlorate of potash crystals by Stokes in 1885 [149] and Rayleigh in

1888 [130]. More recently, what were later named photonic crystals were been found to

be the cause of iridescence in opals, peacock feathers, and butterfly wings [93]. Both

photonic and phononic band-gap materials can attribute their foundation to these ob-

servations.

Probably the first engineered use of phononic band-gaps was in the development

of the surface acoustic wave (SAW) suite of devices starting around 1965 [119], with

the first SAW resonator appearing in 1970 [64]. These early devices used simple Bragg

gratings to reflect waves of a given frequency making a frequency filter which is useful in

a number of signal processing and communication devices. As a result of this discovery,

research in this area boomed with the use of various variations of Bragg grating-like

structures to control the propagation of many different modes of elastic waves. The

devices designed today still use the same basic ideas as the original inventions, usually

by using uni-directional Bragg gratings, and are now generally referred to as band-gap

or stop-band devices and materials.

Bragg gratings are generally considered one-dimensional band-gap materials be-
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cause waves traveling parallel to the grating lines will not exhibit a frequency depen-

dent response. The idea for two-dimensional photonic band-gaps was introduced by

Yablonovitch in 1987 [159]. This was followed up with experiments where designed a

face-centered-cubic structure was designed with dielectric spheres in air [161]. These

structures consist of periodicity of a unit cell in two dimensions. The unit cell generally

consists of a simply shaped inclusion embedded in a host material. It has only been

since this time that the terms photonic crystals or photonic materials have been used.

In three dimensions a complete band-gap, where no propagation exists for any direc-

tion, was later predicted in a particular diamond lattice of dielectric spheres in air by

Ho et al. [73] and experimentally shown by Yablonovitch [160]. This was a much more

difficult search and largely relied on creating designs based on atomic lattice structures.

Joannopoulos et al. [87] give a good overview of these findings in the field of photonic

crystals.

The studies and design methods performed in the field of photonic crystals were

eventually generalized to phononic materials, where most of the mathematical tech-

niques are the same. As such, Sigalas and Economou [145, 143] as well as Kushwaha

et al. [95] were the first to design two- and three-dimensional phononic band-gaps in

1992 and 1993. Later studies have investigated other forms of elastic wave propagation

and include designs for two-dimensional phononic crystals for Rayleigh waves [152, 153]

and Lamb modes [76, 77]. Much focus in this field has been on the design of two-

dimensional structures with to manufacturability concerns and constraints in mind. As

a result, many studies have looked at embedding cylinders or other prismatic shapes in a

host matrix of another material and looking at the band-gap properties for propagation

in the two-dimensional plane. As a natural next step, a large number of groups have

performed parametric studies on these materials by changing various properties such

as the composition of both the inclusion and host materials [73, 95], changing the size

or filling ratio of the inclusion [73, 143, 161], and changing the shape of the inclusion
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[73, 87]. These studies, as a result, provide a number of tools and methods for engineers

to create photonic and phononic materials with various band-gap properties.

3.2.2 Piezoelectric structures

The design of piezoelectric structures largely focuses on the fields of actuation,

sensing, or energy harvesting. Piezoelectric actuation and sensing of elastic waves are

the means by which surface acoustic wave device operate. The design of these devices,

as described earlier, focuses almost entirely on the patterning of electrodes on a piezo-

electric substrate. Ultrasonic transducers also use piezoelectric actuation and sensing

functions, but the focus of design is usually on the size and shape of the piezoelec-

tric element, rather than the electrode patterning. These are the primary areas where

piezoelectric materials are used in wave propagation applications.

A focus of this dissertation is the design of piezoelectric energy harvesters. Flat

beam and plate structures are typically used for these problems because they allow for a

large generation area that can be actively strained by the vibration of a host structure,

ease of analysis, and ability to be “tuned” to the host structure vibration signature.

Most piezoelectric energy harvesting approaches to date focus on the electromechanics

of the piezoelectric transduction and use a transient or steady-state vibrational signa-

ture, usually at resonance, as input for the base excitation of the piezoelectric harvesting

structure. Important aspects of this problem, however, are often neglected. Erturk and

Inman [40] and Erturk et al. [45] demonstrate that while traditional lumped parame-

ter analysis approaches provide much of the basic understanding, they lack important

information about the coupled electromechanics, e.g., the existence of strain nodes at

different resonances or the feedback of the circuit dynamics to the structural response.

Their studies and other recent approaches have focused on improving on these failings by

introducing segmented electrodes [117] or re-poled piezoelectric material distributions

[91, 92]. Other design advances include creating segmented cantilever beam structures
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that take advantage of both segmented electrodes and different structural dynamics [46].

3.3 Topology optimization

Topology optimization is a methodology for systematically solving design prob-

lems where some goal of optimal performance is sought. A commonly used example in

structural mechanics is to maximize the stiffness of a truss for a given maximal weight.

In solving this problem, topology optimization uses a mathematical measure of this

goal to systematically distribute both material and void regions within some prescribed

design domain such that this measure, and thus the goal, is maximized (or minimized).

The formulation of this mathematical measure, or objective function and/or constraints,

is of key importance as it must fully describe the goal, scope, and physics of the prob-

lem, yet not be so restrictive that it prevents exploration of alternative, even physically

impossible, designs. As such, it is a focus of this dissertation as well as the development

of topology optimization methodologies that take advantage of the physical phenomena

in the three areas of interest.

This section describes the formulation of the topology optimization problem, how

it is solved, and how it has been used previously in areas closely related to this disser-

tation.

3.3.1 Formulation

The formal topology optimization problem statement can be written as a con-

strained minimization problem:

min
s

z (s,u (s))

s.t. K (s)u = f

gj (s,u (s)) ≥ 0 j = 1 . . . ng

hk (s,u (s)) = 0 k = 1 . . . nh

0 ≤ si ≤ 1 i = 1 . . . ns

(3.1)
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where z is the objective function depending on the ns number of design variables s =

(s1, . . . , sns)
T and ng inequality and nh equality constraints gj and hk, respectively.

The solution u to the system K (s)u = f is assumed unique for every s. The matrix

K (s) usually does not depend on the design variables directly, but through the material

properties, which are interpolated continuously with design variables si between two

values as:

λ (si) =
(

1− sβ
i

)

λ2 + sβ
i λ1

µ (si) =
(

1− sβ
i

)

µ2 + sβ
i µ1

ρ (si) =
(

1− sβ
i

)

ρ2 + sβ
i ρ1

0 ≤ si ≤ 1

(3.2)

in which β is a parameter that in some situations can help push the design variables

toward the end-points (box constraints) si = [0, 1]. Interpolated material properties

allow for a smooth and continuous objective function and is a mathematical construct

to allow for the solution of an otherwise discrete problem. As such, it is desirable to

minimize the objective such that the design variables are at the box constraints. Such a

set of design variables is often referred to as a“0-1”solution, where the physical feasibility

is not prevented by the presence of so-called “gray” elements (i.e. those not at the box

constraints), the material properties of which do not exist in nature. Assuming the

functions z, gj , and hk are continuously differentiable for si = [0, 1], the corresponding

necessary optimality conditions (Karush-Kuhn-Tucker (KKT) conditions) of (3.1) are:

∇sz(s
∗) +

∑ng

j=1 λ
g
j∇sgj(s

∗) +
∑nh

k=1 µ
h
k∇shk(s

∗) = 0

gj (s∗) ≥ 0 j = 1 . . . ng

hk(s
∗) = 0 k = 1 . . . nh

λg
j ≤ 0 j = 1 . . . ng

λg
jgj (s∗) = 0 j = 1 . . . ng

(3.3)

where λg
j and µh

k are Lagrange multipliers for the inequality and equality constraints,

respectively. If the constraints are active they take the value of zero (i.e. λg
j < 0,
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gj (s∗) = 0 and µh
k 6= 0, hk (s∗) = 0), while if they are passive the Lagrange multipliers

are zero (i.e. λg
j = 0, gj (s∗) > 0 and µh

k = 0, hk (s∗) 6= 0).

The algorithms for solving (3.1) in the scope of this dissertation fall into the cat-

egory of Sequential Convex Programming (SCP). Generally, in these algorithms convex

approximations of (3.1) are constructed and solved in an iterative fashion. The general

process of an SCP is as follows:

(1) Construct a convex approximation of (3.1) at the current design point sk.

(2) Solve the convex subproblem for a search direction.

(3) Perform a line search in the search direction to minimize the convex approxi-

mation and find a new design point sk+1.

(4) Iterate steps 1 through 3 until sk+1 ≃ sk and the KKT conditions (3.3) are

met within some tolerance or a maximum number of iterations are exceeded.

Within the structural optimization community, the most common algorithms used to

solve (3.1) include the method of moving asymptotes (MMA) [150] and its relative the

globally convergent method of moving asymptotes (GCMMA) [151] as well as the SQP

algorithm SNOPT [60]. These are the specific algorithms used in this dissertation.

By formulating the objective and constraints as a smooth continuous functions it

is possible to use the gradient-based SCP algorithm described above. A prominent and

easily recognizable advantage of gradient-based algorithms over discrete methods, such

as genetic or branch and bound algorithms, is the drastically smaller number of function

evaluations that are needed to solve the optimization problem. This in turn allows for the

use of more design variables and finer finite element discretizations, without which the

problems solved in this manuscript would be intractable. The caveat of using gradient-

based algorithms is that non-convexity is a persistent problem in which any acquired

optimal solution may unknowingly be only a local optimum.
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3.3.2 Sensitivity analysis

The gradients of both the objective function and the constraints with respect

to the design variables must be computed for use in the gradient-based algorithm of

choice. The focus here will be on the objective, although the discussion is equally

valid for the constraints. There are three methods for evaluating gradients: numerical,

analytical, and semi-analytical [157]. Numerical evaluation involves directly evaluating

a finite difference approximation of the partial derivatives. When the evaluation of the

objective involves a finite element evaluation, this method can become prohibitively

computationally expensive because the objective must be calculated at least once more

per design variable within each optimization step. For n design variables, this amounts

to a minimum of n+ 1 finite element evaluations per optimization step.

The remedy for the expense of calculating numerical gradients is to calculate

them analytically or semi-analytically. The analytical gradient of the objective function

z (si,u (si)) can be written as:

dz

dsi
=

∂z

∂si
+

(

∂z

∂u

)T du

dsi
(3.4)

where si are the design variables and u is the displacement vector. Differentiating the

system:

Ku = f (3.5)

w.r.t. the design variables with independent load vector f yields:

dK

dsi
u + K

du

dsi
= 0 (3.6)

which can be rearranged to yield:

du

dsi
= −K−1

(

dK

dsi
u

)

= −K−1 (Ppseudo) (3.7)

where Ppseudo = dK
dsi

u is the pseudo load vector. Inserting 3.7 into 3.6 yields:

dz

dsi
=
∂z

∂si
−
(

∂z

∂u

)T

K−1Ppseudo. (3.8)
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In calculating semi-analytical gradients, the derivatives of the system matrix w.r.t. the

design variables in the pseudo load vector are calculated numerically, which is a relatively

computationally simple effort. Here, however, fully analytical gradients are used where

dK
dsi

are formulated and calculated explicitly. These partial derivatives may depend

on material parameters and/or nodal coordinates, however in this dissertation only

material parameters are varied. Notice that the inverse of the system matrix K−1

now appears in the expression for the gradients (3.8). This can reduce the additional

computational effort for the gradients when the system matrix K̃ can be factorized and

stored during the evaluation of (3.5). Generally, the factorization is a computationally

expensive process for large problems, but when stored any additional computations with

the inverse become relatively inexpensive.

From this point there are two methods for finishing the computation of the gra-

dients: directly or via solving the adjoint system. Direct gradient computation solves

(3.8) directly by creating a pseudo load vector P for each design variable, re-solving

K−1Ppseudo, and reinserting to find the objective gradients. The disadvantage to this

method is that, even when the system K is already factorized, forward/backward sub-

stitutions must be computed for each unique pseudo load vector, the number of which

is equal to the number of design variables. Direct gradient computation is therefore ef-

ficient only when there are few design variables. It does, however, have advantages with

larger numbers of constraints because the pseudo load vector and the corresponding

direct solution can be reused for each constraint gradient.

The second method for computing gradients involves solving the adjoint system:

KTλ = −
(

∂z

∂u

)T

(3.9)

for λ and then inserting it into:

dz

dsi
=
∂z

∂si
+ λTPpseudo. (3.10)

An immediate advantage can be seen here for large numbers of design variables because



www.manaraa.com

35

the adjoint system is only solved once per gradient evaluation and then only vector-

vector products are computed. The disadvantage is that a new adjoint vector must

be calculated for each gradient, so for large numbers of constraints this method is less

efficient. This is the converse of the direct computation method. The work in this

document primarily uses the adjoint computation method because of the large number

of design variables and relatively few (if any) constraints in the problems.

This discussion is only valid for real linear systems and modifications must be

made for complex-valued systems, which will be discussed in Section (4.2.3). Sensitivi-

ties of eigenvalue systems will also be discussed later in Section (5.2.2).

3.3.3 Existing topology optimization design methods

Waveguides

The waveguide design strategy of creating a line defect in a band-gap material

is still the primary design method in use today, primarily because they work well and

the concept behind their function is easy to understand. These designs, however, still

suffer from loss and back-scattering caused by inefficiencies in sharp bends and cor-

ners. Without a strict methodology to reduce these inefficiencies, one is resigned to

creatively moving and changing the size of inclusions near the bend and analyzing each

configuration to find the best performing design. Work reported in a number of studies

[14, 53, 85, 86] in photonics have provided an alternate methodology using topology

optimization within the local area of a photonic crystal waveguide bend to maximize

the efficiency of the device. Similarly, in attacking a different efficiency problem, Frei

et al. [55] used topology optimization to adjust the end condition of a photonic crys-

tal waveguide so that they could control the emission properties for a wave exiting the

waveguide. A particularly interesting study by Stainko and Sigmund [148] used topology

optimization to design a photonic crystal waveguide with a tailored the group velocity

with the goal of creating slow light. Tailoring a dispersion diagram in such a way is one
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of the primary and most difficult goals of band-gap and waveguide engineering.

Beyond line defect waveguides, there have also been studies in which a whole

waveguide structure was designed using topology optimization with no initial design

principle such as band-gap materials. The first examples were shown by [146] in which

they created phononic waveguides that cause an elastic wave to bend a corner or focus

the wave into a smaller location. Frenzel created a number of frequency selective devices

akin to multiplexers and demultiplexers [56]. With the goal of dissipating elastic energy

rather than reflecting it over a range of frequencies, Jensen [84] used the same techniques

with absorptive materials. Larson et al. [100] use topology optimization to design plates

that guide flexural wave energy to specific locations on the plate for vibration suppression

and control. Notably missing from this group of work are any three-dimensional studies

or any including the effects of wave interaction with free surfaces. It should be noted

that all of these topology optimization studies involving waveguides used gradient-based

algorithms to achieve their optimal solutions.

Band-gap materials

The creation of band-gap materials using the parametric studies noted previously

is noticeably restricted by the available topologies and imagination of the engineer.

This constraint was relieved when Cox and Dobson [29] used topology optimization

and gradient-based algorithms to design the material layout within a two-dimensional

photonic crystal unit cell with the objective of maximizing the size of pre-existing band-

gaps defined through the dispersion relation. Using this approach they created material

layouts that were drastically different from the simple circular and square inclusions

that are typically used. Similar procedures with topology optimization were later used

to create phononic crystals with maximized band-gaps using gradient-based algorithms

[11, 146] as well as genetic algorithms [57, 80]. Rather than in-plane wave propagation,

band-gap plate materials were designed and investigated experimentally by Halkjær et

al. [68]. A number of studies also designed band-gap materials, not through inducing
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changes in the dispersion diagram, but by other methods. Hussein et al. [81, 83] used

genetic algorithms to create one-dimensional band-gap materials that tailor dispersion

characteristics by maximizing the attenuation or the number and size of band-gaps and

pass-bands. Using this method they created designs with various properties such as

broadband band-gaps that can isolate shock waves. Hussein et al. [80] has also recently

studied the influence of constituent material properties on the optimal design of two-

dimensional band-gap materials. So far, optimization of band-gap materials has been

limited to one and two dimensions, but three-dimensional band-gap material design

using optimization is entirely possible and is sure to seen in the future.

Piezoelectric structures

The use of optimization techniques to design the material layouts of piezoelec-

tric systems for actuation, resonator, or control systems has been studied previously,

although topology optimization for vibrating piezoelectric harvesting systems has not

yet been studied. For example, Donoso and Bellido [34] use topology optimization to

find the polarization layout for piezoelectric plate actuators and sensors, while Abdalla

et al. [1] optimize the layout of a compliant mechanism to maximize the efficiency

of load transfer from a piezoelectric stack actuator. Other piezoelectric actuator de-

sign methodologies using topology optimization have been reported by Carbonari et al.

[19, 20], and Drenckhan et al. [36]. Donoso and Sigmund [35] use shape optimization

to find thickness and width profiles of piezoelectric layers on a cantilever bi-morph to

minimize tip deflections both statically and dynamically. Ha and Cho [66] maximize

the piezoelectric coupling strength by finding optimal material layouts for piezoelectric

resonators, and Kang and Tong [89, 90] use topology optimization to find the layout of

structural and piezoelectric layers, as well as the electric actuation voltages, to control

the displacement field of piezoelectric plates. Zheng et al. [164] use topology opti-

mization to maximize mechanical to electrical energy conversion in a static sense for

piezoelectric plates, and Elka and Bucher [38] optimally distribute electrodes to tailor



www.manaraa.com

38

electromechanical modal filtering. Frecker [54] provides a review of some of the earlier

uses of optimization with piezoelectric actuators and structures. For control systems,

Wang et al. [158] optimize the location of piezoelectric sensors and actuators to control

the vibrations of composite plates.
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Chapter 4

Topology Optimization of Elastic Waveguides

4.1 Introduction

In this chapter the methodology for the design of elastic waveguides using topol-

ogy optimization is explored and expanded. While the bulk of the methodology is not

new, certain aspects are not well developed or understood. For example, the drivers

for design or the influence of free surfaces are aspects of the problem that have not

yet been addressed. Also missing from the literature are general guidelines on compu-

tational needs for these types of problems as well as issues on mesh dependency and

the influence of small feature sizes. The goal of this chapter is to investigate these

issues and expand the methodology with new insight into the physical drivers behind

the problem. The chapter is organized as follows: the general analysis methodology

for time-harmonic problems is presented with explanation of specialized finite elements

that are used to simulate infinite boundary conditions that are needed to solve infi-

nite and semi-infinite domain problems. This is followed by a derivation of sensitivity

analysis for complex valued time-harmonic problems. Next, verification of the modeling

technique and numerous examples of the methodology are given. Deeper investigations

into the methodology are then performed, illustrating various unreported aspects of the

problem. Finally, a summary of the findings in this chapter is given.
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4.2 Analysis

The partial differential equation governing the propagation of waves through an

homogeneous or heterogeneous domain has analytical solutions, but only in simplified

cases of propagation through homogeneous infinite (Equation (4.6)) and semi-infinite

media (see Graff [62]) or through highly structured heterogeneous media (e.g. Bragg

gratings or phononic/photonic crystals [87]). General heterogeneous structures, on the

other hand, require the use of computational tools.

The analysis tool of choice for the problems presented in this document is the

Finite Element Method (FEM) primarily because each individual finite element can be

manipulated as a sole entity within the larger system. This is key for using topology

optimization as will be seen in a later section. With the exception of a few special

element types, which are given special consideration later, common isoparametric plane

strain finite elements such as those found in Bathe [6] are used for computation.

4.2.1 Equations of motion

The propagation of waves in an elastic medium is governed by the equations of

motion (ignoring body forces):

ρü = ∇ ·T + f (4.1)

where ρ, (̈·), u, ∇, T, and f are the mass density of the material, second derivative with

respect to time, displacement vector, gradient operator, stress tensor, and vector of

traction forces, respectively. The stress tensor is related to the strain tensor S through

the constitutive equation:

T = c : S (4.2)

where cE is the elastic stiffness tensor, and the strain tensor is related to the displace-

ment vector through the kinematic relationship:

S =
1

2

(

∇u + (∇u)T
)

(4.3)
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with (·)T being the transpose operator. For an isotropic medium, the material properties

can be reduced to three constants: material density ρ, and two of the many forms of the

elastic constants. In wave propagation it is customary to represent the elastic constants

in terms of the Lamé coefficients λ and µ, which are related to the better known elastic

modulus E and Poisson’s ratio ν through the equations:

λ =
Eν

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)

. (4.4)

For wave propagation through an homogeneous isotropic medium, the reduction in the

elastic stiffness tensor allows for simplification of equations (4.1), (4.2), and (4.3) to

Navier’s equations with forcing term:

ρü (x, t) = (λ+ µ)∇∇ · u (x, t) + µ∇2u (x, t) + f (x, t) (4.5)

with the displacement vector u and traction forces f a function of the location vector x

and time t. The general solution to this set equations can be represented as a superposi-

tion of forward and backward traveling plane waves commonly known as the d’Alembert

solution which takes the form:

u (x, t) = Ar f (n̂ · x− ct) + Al f (n̂ · x + ct) (4.6)

where f (·) is a function of the propagation direction n̂, the spatial location vector, the

wavespeed c, and time, while Ar and Al are component vectors corresponding to the

amplitudes of the forward (or rightward) and backward (or leftward) travelling plane

waves, respectively. The specific form of f (·) depends on the mode of propagation,

which are described in more detail in the following section.

4.2.2 Time-harmonic wave propagation problems

General wave propagation analysis requires the solution of the equations of motion

in both space and time, but in many cases this is unnecessary or even prohibitive as
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time-stepping algorithms can be computationally expensive. Analyses of linear systems

can be simplified by solving in the frequency domain with a single excitation/response

frequency ω. In doing so, the forcing function and displacements can be defined in

complex notation as:

f (x, t) = f (x) eiωt (4.7)

u (x, t) = u (x) eiωt (4.8)

where i represents the imaginary unit. Inserting (4.7) and (4.8) into the wave equation

(4.5) results in the time-harmonic wave equation:

∇(λ+ µ)∇ · u (x) + µ∇2u (x) + ω2ρu (x) + f (x) = 0 (4.9)

which is no longer a function of time. The weak form of this equation is written as:

∫

Ω
v · ∇(λ+ µ)∇ · u (x) + µv · ∇2u (x) + ω2ρv · u (x) + v · f (x) dΩ = 0 (4.10)

with test function v and integrated over the domain Ω. Using the Galerkin method,

equation (4.10) can be discretized into a system of finite elements such that:

(

K− ω2M
)

u = f (4.11)

with global stiffness matrix K and global mass matrix M, and is solved in complex-space

for a phase-dependent forcing function f . It is often necessary to include velocity pro-

portional damping into the formulation, whether as material damping or as a boundary

condition, which changes (4.11) into:

(

K + iωC− ω2M
)

u = f (4.12)

with damping matrix C. The form of these matrices (with the exception of the mass

matrix as addressed later) can be found in a number of finite element references (e.g.

Bathe [6]). The finite element method allows for variation in material properties on

a per-element basis, so that while each element is homogeneous the material domain
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described by (4.12) can be heterogeneous, an important feature when combined with

topology optimization as will be shown later.

Mass matrix for wave propagation

There exist two methods for representing the mass matrix for a finite element,

namely, the consistent and lumped mass matrices. The consistent mass matrix arises

from integrating the density over the element domain in the same manner as is done for

the stiffness matrix. For the lumped mass matrix, however, the terms of the consistent

mass matrix are “lumped” onto the diagonal of the matrix. With respect to wave prop-

agation, it has been shown by Belytschko and Mullen [9] that neither matrix accurately

models wavespeed where the consistent mass matrix produces a wavespeed that is too

high and the lumped mass matrix too low. Belytschko and Mullen additionally showed

that an equally weighted average of the two matrices accurately models the wavespeed.

It is this averaged mass matrix that is used for solving wave propagation problems in

this document. When solving band-gap material problems, however, the lumped mass

matrix is used as is customary with modal analysis problems of which this type of

problem is closely related.

Non-reflecting boundary conditions

For time-harmonic wave propagation problems, it is often necessary to model

more than the finite domain of interest through which a wave would travel. A finite

domain works for time marching wave propagation problems where one can stop the

simulation when the wavefront reaches a computational boundary for a sufficiently large

computational domain, but for time harmonic problems the wavefield throughout the

whole domain is calculated at once and boundary interactions are important. Therefore,

boundary conditions that model the infinite domain without reflection are needed. Many

methods exist for implementing so-called infinite or absorbing or non-reflecting boundary

conditions including enclosing the finite element domain in boundary elements [15],

doubly asymptotic expansions [58], viscous damping elements (discussed here), and
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Perfectly Matched Layer (PML) elements (discussed in the next sub-section). A review

of some of these methods as applied to time-harmonic acoustic problems can be found

in [69].

The viscous damping elements of Lysmer and Kuhlemeyer [107] are formulated

to damp out waves at a boundary and minimize the reflection at that boundary. The

reflection is minimized by matching the damping coefficient to the incident wavespeed,

propagation direction, and propagation mode. An underlying assumption of the method

is that waves reach the interface at normal incidence. In this case the longitudinal wave

displaces normal to the surface and so damping coefficients in that direction are matched

to the longitudinal wavespeed and likewise for the shear wave where displacements are

parallel to the surface. It is immediately apparent that for waves at other angles of

incidence, the damping coefficients are not properly matched and so some reflection of

the wave will occur. The reflection is still sufficiently small, however, with at least 96.5%

of longitudinal and 89% of shear wave energy being damped out within 60 degrees of

normal incidence.

Perfectly Matched Layers (PMLs)

To correct for the shortcomings of viscous damping elements without succumbing

to the expense of boundary elements, one can use Perfectly Matched Layer elements

(PMLs). Analytically, PMLs are perfect, but once discretized this is not true, although

the error remains small and independent of angle of incidence. PMLs were first in-

troduced by Bérenger [12] for electromagnetic wave problems and later by Chew and

Weedon for elastodynamics [25]. PMLs work on the idea that the coordinates within a

layer at the edge of computational domain are “stretched” to infinity so as to approx-

imate an infinite boundary [25]. A finite element implementation, however, was not

presented for elastodynamics until Basu and Chopra [5], who perform the coordinate

stretching by modifying the shape function matrices in the finite element formulation.

Zheng and Huang [165] and Harari and Albocher [70] provide a different approach where
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the coordinate stretching occurs in the constitutive matrix, resulting in an element with

complex-valued anisotropic material properties. Both approaches perform equally well,

and use the same stretching function, but the anisotropic PMLs are much easier to

implement. The work in this dissertation uses these anisotropic PML elements with pa-

rameters guided by the investigations of Harari and Albocher [70] and Basu and Chopra

[5]. Specifically, the PMLs are typically 10 element layers deep with a stretching function

ψ of the form:

ψ (x) = 1− ismax

(x

L

)2
(4.13)

where x is the distance from the domain-PML interface to the element center, L is the

total thickness of the PMLs, and smax is the maximum attenuation coefficient which is

given a empirical value of 10.

4.2.3 Sensitivity analysis for complex-valued time-harmonic problems

For a complex-valued, time-harmonic, linear system the objective sensitivities are

re-derived here. The original time-harmonic system (4.12) can be written as:

(

K + iωC− ω2M
)

u− f = K̃u− f = 0 (4.14)

where K̃ is the system matrix to be factorized for a given frequency. The real and

imaginary parts can be disassociated such that K̃ = Kr + iKi and u = ur + iui, where

(·)r and (·)i are the real and imaginary parts, respectively, and the complex system

(4.14) can be equivalently written as the real system:






Kr −Ki

Ki Kr













ur

ui






−







fr

fi






= 0. (4.15)

The gradient of the objective function z (si,u (si)) with respect to the design variables

si can be written using the chain rule:

dz

dsi
=
∂z

∂si
+







∂z
∂ur

∂z
∂ui







T 





dur
dsi

dui
dsi






. (4.16)
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Using the adjoint method described in [157], one can create an augmented objective

function:

z0 = z +







λr

λi







T 











Kr −Ki

Ki Kr













ur

ui






−







fr

fi












(4.17)

where λ is a vector of complex Lagrange multipliers. The augmented objective function

(4.17) is equivalent to the original objective because the added terms from (4.15) are

equal to zero. Taking the derivative of (4.17) and letting (·)′ = d(·)
dsi

while assuming that

the load is independent of the design variables results in:

dz0
dsi

= ∂z
∂si

+







∂z
∂ur

∂z
∂ui







T 





u′

r

u′

i







+







λr

λi







T 











K′

r −K′

i

K′

i K′

r













ur

ui






+







Kr −Ki

Ki Kr













u′

r

u′

i













. (4.18)

Rearranging gives:

dz0
dsi

= ∂z
∂si

+







λr

λi







T 





K′

r −K′

i

K′

i K′

r













ur

ui







+





















∂z
∂ur

∂z
∂ui







T

+







λr

λi







T 





Kr −Ki

Ki Kr



























u′

r

u′

i







(4.19)

where the Lagrange multipliers are arbitrary and can be selected to make the expression

in the braces equal zero such that:

dz0
dsi

=
∂z

∂si
+







λr

λi







T 





K′

r −K′

i

K′

i K′

r













ur

ui






=
∂z

∂si
+Re

(

λ∗K̃′u
)

(4.20)

and






λr

λi







T 





Kr −Ki

Ki Kr






= −

(

∂z

∂ur
+ i

∂z

∂ui

)T

(4.21)

after which taking the transpose results in:






Kr Ki

−Ki Kr













λr

λi






= K̃∗λ = −

(

∂z

∂ur
+ i

∂z

∂ui

)

. (4.22)
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Taking the conjugate of (4.22) results in the adjoint system:

K̃T λ̄ = −
(

∂z

∂ur
− i ∂z

∂ui

)

(4.23)

for which if the system K̃ is symmetric (i.e. K̃T = K̃) then one can find λ̄ from:

K̃λ̄ = −
(

∂z

∂ur
− i ∂z

∂ui

)

. (4.24)

Solving for λ̄ and inserting into (4.20) gives an expression for the gradient of the objec-

tive:

dz0
dsi

=
∂z

∂si
−Re

(

(

∂z

∂ur
− i ∂z

∂ui

)T

K̃−1∂K̃

∂si
u

)

(4.25)

for which the partial derivatives of the system matrix can be written as:

∂K̃

∂si
=
∑

n

(

∂Ke

∂si
+ iω

∂Ce

∂si
− ω2 ∂Me

∂si

)

(4.26)

where the partial derivatives can be evaluated on the n element matrices Ke, Ce, and

Me and summed to create the global matrix.

4.3 Verification

Presented here are two verification examples showing that wave propagation in

elastic structures is being properly modeled by the finite element implementation.

4.3.1 Material properties

The properties of materials used in this chapter are given in Table 4.1.

Table 4.1: Material Properties

Material E-Elastic Modulus (GPa) ν-Poisson’s ratio ρ-Density (kg/m3)

Silicon 162.9 0.2226 2331

Aluminum 70.38 0.3454 2697
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4.3.2 Pressure and shear wave propagation

Model verification for bulk waves is performed using a silicon computational do-

main of length 0.05 m and height 0.01 m with a 558x111 element mesh. Periodic bound-

ary conditions are used on the top and bottom while non-reflecting boundary conditions

are used at the left and right boundaries. A harmonic displacement of unit magnitude

is applied to the left boundary in the right direction for the pressure wave verification

case and in the vertical direction for the shear wave case. The displacement fields and

a plot of displacements vs. length for the finite elements and the analytical solution are

shown in Figure 4.1 for both the pressure and shear wave cases. The numerical results

show excellent agreement with the analytical solution.
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Figure 4.1: Verification of bulk wave propagation. (top) Wavefield and (bottom) com-

parison with analytical results for (a) pressure waves and (b) shear waves.

4.3.3 Rayleigh wave propagation

Verification of Rayleigh wave propagation is performed using a computational

domain of 0.1m length and 0.025m height with a 500x250 element mesh surrounded

by PMLs 10 elements thick on the bottom and two sides. The top surface is free to
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accommodate the surface wave. A Rayleigh wave is introduced on the left side inside

the PMLs through appropriately varying harmonic displacements through the thickness.

Figure 4.2 shows the wavefields for both displacement directions and a comparison with

the analytical solution provided by Graff [62], which is in good agreement.
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Figure 4.2: (a) Wavefields for displacements in (top) x-direction and (bottom) y-

direction. (b) Comparison of analytical and numerical solutions for Rayleigh wave

propagation.

4.4 Applications

In this section a number of examples are presented for the design of waveguide

structures using topology optimization. In general for waveguides it is desirable to have

most or all of the incoming wave energy reach the end of the waveguide. To this end,

two objective functions are used. The first is formulated as the complex displacement

norm, which is related to the propagating energy. The second objective is the Poynting

vector, a direct measure of the energy flow of a propagating wave. The following time-

harmonic wave propagation examples and studies in the following section make use of
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one of these two objective functions.

4.4.1 Objective functions and sensitivities

Displacement-based objective function

The displacement-based objective function is the same as that used in [11, 56, 146].

It is formulated as:

z =
∑

j

αj |uj|2 = u∗Lu (4.27)

where L is a diagonal matrix with non-zero entries αj ∈ ℜ corresponding to the degree(s)

of freedom where the displacement norm is to be minimized (αj > 0) or maximized

(αj < 0). From equation (4.25), it remains to find the gradient of the objective with

respect to the design variables ∂z
∂si

and the displacements ∂z
∂ur

and ∂z
∂ui

. For this objective

∂z
∂si

= 0, and after a little math it can be shown that ∂z
∂ur

= 2Lur and ∂z
∂ui

= 2Lui. It

then follows that the gradient of the objective can be written as:

dz0
dsi

= −2Re

(

u∗LK̃−1∂K̃

∂si
u

)

(4.28)

which can be solved using either the direct or adjoint method. Because the coefficients

αj operate on individual degrees of freedom then the displacement components can be

minimized or maximized separately, a method commonly used in the following examples.

Poynting vector-based objective function

The Poynting vector P is a vector of wave energy flux and is written as:

P = −1

2
u̇∗T (4.29)

where u is a vector of displacements u = (ux, uy, uz)
T , (·)∗ is the complex conjugate

transpose, ˙(·) is differentiation w.r.t. time, and T is the stress tensor written as:

T =















Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz















. (4.30)
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One can use the vector components of the Poynting vector to create a scalar objective

function such as energy flux in a particular direction. Assuming time-harmonicity and

re-writing (4.29) in terms of the real and imaginary parts as:

P = −1

2
iω (urTr + iurTi − iuiTr + uiTi) (4.31)

allows for the use of equation (4.25) to calculate its gradients. In the finite element

formulation the stress tensor can be written as a function of the displacements:

T = cBu (4.32)

where c is the constitutive tensor and B is the strain-displacement matrix. Writing this

in terms of the real and imaginary parts as:

T = Tr + iTi = cBur + icBui (4.33)

shows that ∂Tr
∂ui

= ∂Ti
∂ur

= 0, ∂Tr
∂ur

= cB~I, and ∂Ti
∂ui

= icB~I where ~I is a vector of ones

the size of the displacement vector. Differentiating (4.31) w.r.t. the real and imaginary

displacement vectors results in:

dP
dur

= −1
2 iω

(

Tr + iTi + ur
∂Tr
∂ur
− iui

∂Tr
∂ur

)

= −1
2 iω

(

T + u∗ ∂Tr
∂ur

)

= −1
2 iω

(

T + u∗cB~I
)

i dP
dui

= −1
2 iω

(

Tr + iTi − ur
∂Ti
∂ui

+ iui
∂Ti
∂ui

)

= −1
2 iω

(

T− u∗ ∂Tr
∂ur

)

= −1
2 iω

(

T− iu∗cB~I
)

(4.34)

for which:
(

dP
dur
− i dP

dui

)

= −1

2
iωu∗cB (1 + i)~I. (4.35)

Taking the partial derivative of the Poynting vector w.r.t. the design variables yields:

∂P

∂si
= −1

2
iωu∗

dT

dsi
= −1

2
iωu∗

dc

dsi
Bu. (4.36)

Combining equation (4.25) with the expressions (4.35) and (4.36) results in the following

analytical expression for the gradients of the Poynting vector objective function:

dP

dsi
= −1

2
iωu∗

dc

dsi
Bu−Re

(

(

−1

2
iωu∗cB (1 + i)~I

)

K̃−1 ∂K̃

∂si
u

)

. (4.37)
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4.4.2 Examples

Bulk wave in-plane bending waveguide

The design setup for a bending waveguide problem for in-plane bulk waves is

shown in Figure 4.3a. An incoming elastic wave of frequency 2.8MHz enters the 1 cm

square domain from a 2 mm port on the left boundary. A material layout of silicon

and aluminum is sought such that a wave with only displacements normal to the exit

surface will leave a 2 mm port located at the bottom of the domain. The objective

is formulated so that vertical displacement norms are maximized while horizontal are

minimized. Viscous damping non-reflecting boundary conditions are used along all

boundaries. The domain is discretized into 400x400 elements. As is the case for all

examples in this chapter, a linear material interpolation and no filtering is used.

The optimal silicon/aluminum material layout needed to form the waveguide is

shown in Figure 4.3b. Figures 4.3c, d, e show the wavefields that results if the design

domain consists of either a homogeneous material or the final design. As expected

in the homogeneous design, the wavefield radiates from the source and is dissipated

at the absorbing boundaries. In the optimal design, however, the waves clearly are

focused toward the exit location. Similar to the results of Sigmund and Jensen [146] for

scalar acoustics problems, the resulting material shows a bent striated structure that

resembles a curved Bragg grating. This design has an energy efficiency of 94.8% based

on integrating the Poynting vector along the input and output ports. Removing the

“gray” elements from the final design by thresholding design variables at a value of 0.5

results in a change in objective of 0.27%, indicating that the unconverged regions do not

have much influence on the operation of the device. Given the symmetric nature of the

problem, it would be expected that the material layout would also be symmetric. This,

however, does not occur because the displacements at the exit port are not constrained

to mirror those of the input port.
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(a) (b)

(c) (d) (e) (f)

Figure 4.3: Topology optimization problem of an in-plane waveguide which bends an

incoming pressure wave around a 90◦ bend. (a) Problem setup and (b) final material

distribution of silicon (blue) and aluminum (red). Wavefield in (top) a homogeneous

material and (bottom) the final design for the (c) complex norm magnitude, (d) real

x-displacements, (e) real y-displacements, and (f) Poynting vector magnitude.

P-wave to S-wave mode converter

A curious unsolved wave propagation problem is to design a device that can

perform full mode conversion of a pressure wave into a shear wave or vice-versa. While

there is no other known solution to this problem, topology optimization provides a

method of accomplishing this task. The setup for this problem consists of a 1cm x 1cm
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domain of silicon and aluminum surrounded by viscous damping non-reflecting boundary

conditions with a pressure wave excited at a 2mm port on the left side. The domain

is discretized by a 150x150 element mesh with an initial design of an homogeneous

material at the midpoint of the design space. The objective is formulated so that the

vertical displacement norms are maximized while the horizontal are minimized at a 2mm

output port on the right side of the domain. This effectively maximizes the shear wave

component and minimizes the pressure wave component at the output. The results of

this problem can be seen in Figure 4.4, which shows the final design and the horizontal

and vertical complex norm wavefields. This problem also has a peculiar feature in that

the optimization landscape seems to be symmetric, a feature that is discussed more in

section 4.5.4.
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(a)

(b) (c)

Figure 4.4: (a) Final design of a pressure to shear wave mode converter composed of

silicon (blue) and aluminum (red). It can be inferred through the complex norm plots

for the (b) horizontal direction and (c) vertical direction that a pressure wave enters the

domain at the left but a shear wave exits the domain at the right.

Three-dimensional surface wave focuser

The idea behind the design of a three-dimensional surface wave focuser is to

transfer the energy created by a surface load into surface waves that are focused in

a single direction. The design setup for this problem is shown in Figure 4.5a. The

three-dimensional half space is created by surrounding a 1cm x 1cm x 2.5mm domain

of 72000 eight-node brick elements by viscous damping boundary conditions on all sides

except the top, which is free. Every element in the computational domain is assigned a

design variable and viscous damping boundary condition elements have their material

properties tied to their adjacent elements. A 1.6 MHz vertical harmonic load on a small
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area (source) at the center of the top surface introduces wave energy into the domain.

A material layout of silicon and aluminum is sought that focuses the surface wave to

a small exit (output) region on the top surface. The objective function is posed in

the usual manner (4.27) such that the displacements are maximized at a set of nodes

(L) at the edge of the computational domain where the free surface meets the non-

reflecting boundary conditions. The surface wave magnitude will then be maximized at

this location.

The resulting material layout is shown in Figure 4.5b where it is visualized in the

form of material isosurfaces. The isosurfaces are located where the material gradient is

the largest, i.e. at material interfaces. The isosurfaces show a complex material layout

throughout the domain, although there are some recognizable features. The materials

tend to order like an alternating array of hyperbolic mirrors focusing the waves in

one direction in a manner similar to how a headlamp focuses light. The wave fields

in a homogeneous and the optimized material layout domains, Figures 4.5c and 4.5d

respectively, suggest that this is a reasonable analogy. In the optimized structure, the

surface waves, which in the homogeneous material propagate radially outward from the

source, are strongly focused along the surface to the output location and out of the

computational domain.

In studying this problem further, it is investigated whether the wavefield is signif-

icantly affected by the removal of gray elements by setting the design variables to a full

“0-1” solution. To do this all design variables in the final solution at or below 0.5 are set

to 0 and above 0.5 are set to 1. Removing gray elements results in a very small change in

objective of about 0.3%. This not only shows that the solution is well converged but also

that the solution is relatively insensitive to the presence of gray elements. In another

study, the efficiency of the optimized structure with regards to energy transmission from

the input load to the output port is analyzed. It is found that the optimized design

is 74% efficient at transferring the energy from the harmonic load to the output port.



www.manaraa.com

57

Although this is already quite good, higher efficiencies can be expected by choosing an

energy-based objective or by enlarging the design domain and thus increasing the space

for additional “mirrors”.

(a) (b)

(c) (d)

Figure 4.5: (a) Design setup for a surface wave device that focuses input energy from a

normal surface load f into surface waves that exit the domain at location L. (b) Topology

optimization results for the surface wave device problem. Material layout is presented in

material isosurfaces that are generally located at material interfaces. (c) Surface waves

seen as displacement isosurfaces propagate radially in a homogeneous material from the

point of excitation as expected, but (d) are focused in one direction when they travel

through the final design.
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Manufacturable surface wave focuser

In a modification of the previous example, which in reality cannot be manufac-

tured, this problem is set up to create a design that is manufacturable using lithography

or thin film processes. The same problem as before is considered with the exception that

the distribution of material (again silicon and aluminum) is confined to columns within

a 1mm film on a substrate of silicon and the load is applied at 2.0 MHz. To confine the

distribution, the material properties are “tied” vertically within the film layer to a single

design variable. Again, the objective is to get as much surface wave energy as possible

to exit the domain at a specific location.

The final optimized design layout as well as its wavefield and a homogeneous

wavefield are shown in Figure 4.6. The layout of materials (Figure 4.6a) shows a non-

intuitive design which effectively directs energy to the output port (Figure 4.6c) which

would otherwise propagate radially (Figure 4.6b) from the input source. As was the case

with the previous example, there are again the same recognizable features resembling the

alternating series of curved mirrors that direct the energy in the proper direction. The

difference here, however, is that in the previous problem the material distribution also

created a bowl-like structure through the depth of the design. This bowl-like structure

is able to also reflect bulk waves that are created by the harmonic load and propagate

into the material, a capability not possible in the manufacturable design presented here.
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(a) (b) (c)

Figure 4.6: (a) Results of the surface waveguide problem reveal a non-intuitive distribu-

tion of silicon (blue) and aluminum (red). The wavefield, which (b) normally propagates

radially from the source in a homogeneous material, is (c) guided to the output location

in the final design.

Three dimensional surface wave bender

This example, analogous to the two-dimensional bending waveguide, is a surface

wave bending waveguide situated on top of a three-dimensional halfspace. This example

also demonstrates a FETI [49] large-scale topology optimization implementation for

wave problems and is one of the largest problems ever demonstrated in the literature

[47]. The problem is set up on a 10mm x 10mm x 4mm computational halfspace in which

a 2mm to-be-determined layer of silicon and aluminum rests on a 2mm silicon substrate.

A 2.0 MHz surface wave is excited at a 2mm port at the center of one of the edges and

the objective is set to maximize the output at a 2mm port at the center of the edge

perpendicular to the input edge. The domain is discretized into a 160x160x64 element

mesh with a free top surface and non-reflecting boundary conditions on the other sides

representing about 4.9 million complex, or 9.8 million real, degrees of freedom. To

account for manufacturability, columns of elements within the film were tied to a single

design variable resulting in a total of about 26,000 design variables. The solution of

the wavefield is computed using the FETI solver and MMA is used for the optimization
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problem.

The results are shown in Figure 4.7. The final material layout and wavefield are

represented by isosurfaces. The wavefield shows that the surface wave bends and exits

at a right angle to the input direction.

(a) (b) (c)

Figure 4.7: Results of a bending waveguide for surface waves showing the (a) design

setup, (b) final material distribution of silicon (blue) and aluminum (red), and (c) the

wavefield through the final design showing the surface wave bending to exit at the right.

4.5 Methodology Refinement Studies

The studies in this section focus on details of the methodology presented in this

chapter and aim to expand it through increased understanding of the phenomena and

requirements needed to solve these types of problems.

4.5.1 Optimization drivers and modeling needs

In general, topology optimization problems are driven to their optimal solution

through the exploitation of a physical phenomenon. For example, many static struc-

tural optimization problems maximize the stiffness to mass ratio by creating a structure

that is everywhere stressed at its maximum allowed stress value. For wave propagation

problems Bellido and Donoso [8] have shown that “0-1” solutions are optimal in certain
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cases of one-dimensional problems, but they do not investigate the physical phenom-

ena behind the mathematics. Here, however, the physical phenomena drivers can be

inferred through the example problems of this chapter. The first phenomena at work

are wave reflection and transmission at a material interface, which are characterized by

the impedance mismatch between two adjacent materials. The higher the impedance

mismatch the higher the reflection coefficient (and lower the transmission coefficient)

and thus the more wave energy that can be directed. A next phenomenon is the result

of Bragg reflections. As stated earlier, this phenomenon exists when material interfaces

are located at half-wavelength intervals of a traveling wave and collectively act as a

mirror at certain frequencies. The effect is most prominently seen, but not necessarily

expected, in the solutions to the bending waveguide problems which each look like an

array of curved mirrors. The presence of these phenomena, both of which are influenced

by material and geometric properties, are maximized when the material properties are as

different as possible and together indirectly explain why“0-1” solutions in wave propaga-

tion optimization problems tend to be a natural occurrence. As such, these phenomena

are the drivers for topology optimization problems involving wave propagation.

It may be noticed that some of the mesh sizes presented in the examples problems

of this chapter are very large. The need for such a dense mesh is not immediately clear

as many static structural optimization problems actually have difficulty with dense

meshes (e.g. checkerboarding, small non-relevant features, etc.). The explanation also

lies in the physics of the problem and can be explained through three factors. The first

factor is caused by the Bragg condition. The effectiveness of this phenomenon is highly

dependent on the precise placement material interfaces as evidenced by Figure 2.5 in

section 2.2.1. As such, for static meshes, interface placement is directly dependent on the

element size, thus dictates the need for a fine mesh. Poor placement, to a limited extent,

only serves to reduce the effectiveness of the design rather than destroy it completely

(i.e. the problem is not overly sensitive to changes). The second factor is the need to
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resolve the wavefield. A very rough estimate for properly modeling a wavefield is to

have ten elements per wavelength. In topology optimization problems, however, this is

not enough as again the important factor is to define the location of material interfaces,

the proper position of which is dependent on the wavelength. The third factor is the

number of wavelengths one wants to fit into the domain, which depends on the problem

of interest. Once all of these pieces are accounted for the problem quickly becomes very

large as a necessity. As a rough minimal estimate, consider a three-dimensional surface

wave problem with 20 elements per wavelength, 5 wavelengths in the domain, and a

depth of 2 wavelengths. This results in a 100x100x40 mesh with approximately 1.25

million complex, or 2.5 million real, degrees of freedom. In general, this problem size is

much larger than those performed with topology optimization for most other types of

problems in the literature.

4.5.2 Mesh dependency study

A prominent issue in the design of structures using topology optimization is a

phenomenon called “checkerboarding.” It is characterized as an exploitation of the dis-

cretization of displacement-based finite elements in which adjacent elements within a

mesh have an alternating pattern of “0” and “1” properties, which looks like a checker-

board for square meshes. The simplest explanation of their occurrence is that a“checker-

board” design has an artificially high stiffness due to the element formulation but still

maintains a minimal mass to stiffness ratio, which is the usual form of the objective

for these types of problems. Mesh refinement does not help the issue, as in most cases

it just makes the checkerboarding finer. A number of methods exist for avoiding this

problem such as various density filtering techniques or by using higher order displace-

ment interpolation in the finite elements [11], but it has not yet been shown whether

the same or similar problems occur in time harmonic wave propagation problems.

Based on physical principles, one can note the presence of a physical length scale
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within wave propagation problems, namely the wavelength, that is noticeably absent in

static structural problems. The presence of this inherent, mesh independent length scale

has been noted before [146] and was used to explain the lack of mesh dependency for

wave propagation problems. There have not been any studies in the literature, however,

that have convincingly shown this argument to be true or false.

To study this question, the two-dimensional in-plane bending waveguide problem

of section 4.4.2 was used to see what effect the degree of mesh refinement has on the

solution to the optimization problem. The dimensions of the problem are kept constant

with a loading force frequency of 2.8MHz while the size of the mesh is varied from a

50x50 to 400x400 element grid. No filtering or constraints are used on the problem,

which would otherwise affect the presence of mesh-dependent effects. Figure 4.8 shows

the elemental density distributions for the final design for this set of problems. As the

figure shows, little change occurs in the predominant features of the structure with the

exception of refinement in the details of the inclusions. This indicates that the design

is generally converging as the mesh is refined, an observation in line with others [146].

Upon close inspection of the finest design, however, as shown in Figure 4.9, one can see

that some features become much smaller than the smallest wavelength in the problem

(the domain is about five wavelengths wide). These features are not, and cannot due to

mesh size, be present in the coarser meshes, which indicates a mesh dependency.
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(a) (b)

(c) (d)

Figure 4.8: Bending waveguide optimization results for mesh sizes of (a) 50x50, (b)

100x100, (c) 200x200, and (d) 300x300. Little difference overall can be seen between

the designs other than general refinement of the features.
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(a) (b)

Figure 4.9: Evidence of mesh-dependent effects in bending waveguide. (a) 400x400 mesh

with (b) close-up view showing an area with effective material properties.

This study shows that there exists a mesh dependency for time harmonic wave

propagation problems in topology optimization. As a mesh gets finer, there is a general

convergence to a specific design due to the inherent length scale presented by the wave-

length. Further mesh refinement, however, introduces regions where very small features

appear. One can reasonably speculate that in these regions the optimization algorithm

is trying to make a section of the design with effective material properties rather than

use reflection and transmission as the driving factors for design. As a result of these

two competing factors there likely exists for all harmonic wave propagation topology

optimization problems a mesh density or range of mesh densities where major features

with sizes on the order of the wavelength are sufficiently converged, but minor features

with sizes much smaller than the wavelength have not yet appeared. Based on this

study, a general guideline for preventing minor features is to use a mesh density that

has between 15 and 40 elements per wavelength. This observation encompasses the

high-end guideline for general wave propagation analysis (about 10 to 20 elements per

wavelength) but also includes even finer discretizations necessary for accurate placement
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of interfaces (as discussed in section 4.5.1).

4.5.3 Impact of small-sized features

As shown in the examples of this chapter, topology optimization can create elastic

waveguides with very complex and intricate material layouts. While it is possible,

depending on the length scale, to manufacture these designs using a variety of processing

techniques including thin film deposition, questions arise as to whether such detailed

features are really necessary for the waveguide to function. In particular, how much do

small features contribute to the waveguiding ability and performance? If small features

have a negligible impact then they can be removed from the design, thereby potentially

simplifying and reducing manufacturing costs.

To study this question, the 200x200 element bending waveguide problem from

section 4.5.2 is considered. A penalization of the non-converged design variables and

then a thresholding is applied to this design to create a purely “0-1” solution. This

process changed the efficiency of the waveguide from 94.4% to 94.0%, based on integrat-

ing the Poynting vector at the input and output ports. Starting with the thresholded

design, image processing techniques are used to remove small features such as small

inclusions or ragged edges in the design. Two image morphology functions are used on

a binary image of the design where each pixel represents an individual element. The

first is morphological closing where a disk of a given pixel radius is used to dilate and

erode pixel boundaries, which essentially smooths the boundaries. The second function

removes groups of pixels whose collective population is smaller than some threshold,

which acts to remove small features from the design. The final image is then translated

back into a finite element model that is then solved. Two levels of processing are consid-

ered here. This first is a medium level in which the morphological closing pixel radius

is 1 and the pixel group threshold is 20 pixels. The second, high level of processing is

more aggressive where the pixel radius is 2 and the group threshold is 30 pixels.
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Figure 4.10 shows the designs and results of this study. The original design, the

thresholded design, and the two processed designs are shown along with figures showing

the differences between the processed and thresholded design. In the processed designs,

the medium level produces changes where 0.94% of the total area of the design is altered

whereas the high level changes the design by 2.32%. The efficiencies of the designs are

90.5% for medium processing and 80.2% for high processing. These results indicate

that a moderate level of smoothing and small feature removal has little effect on the

performance of the waveguide. Making too many adjustments to the design, however,

can noticeably impair the device, although the vast majority of energy is still guided

properly to the exit as shown in the magnitude of the Poynting vector magnitudes in

Figure 4.10.
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Figure 4.10: Bending waveguide design subject to post processing to remove small

features. (a) (top) Original and (middle) thresholded material layouts of silicon

(blue/black) and aluminum (red/white) for the bending waveguide. (b) Medium and (c)

high levels of (top) post processed designs result in (middle) different degrees of design

change from the thresholded design. (bottom) The Poynting vector magnitude of the

wave field for each of these material layouts.

4.5.4 Symmetric optimization landscapes and non-optimal KKT points

It is well known that topology optimization problems may have multiple, even

numerous, local optima. Most optimization algorithms find these optima by looking
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for design points that satisfy the Karush-Kuhn-Tucker (KKT) optimality conditions. In

this section, an example is given that exhibits behavior suggesting that the optimization

landscape is symmetric; a fact that indicates the KKT point may be located at a saddle

point rather than a convex local optimum.

The existence of a symmetric optimization landscape was first noticed when solv-

ing the P-wave to S-wave converter problem of section 4.4.2. In exploring this problem

further, a mesh of 120 elements per side was used. In an unrelated mesh dependency

study, three different final designs were found within the set of mesh size cases. Two

designs were unsymmetric, but perfect mirror images of each other, while the third de-

sign was symmetric about a horizontal line through the center of the design domain (see

Figure 4.11a-c). The two mirror image designs also had nearly equal objective values,

which were significantly better than the symmetric design. The final scaled objectives

for the non-symmetric designs were about z ≈ 51 while for the symmetric design z ≈ 11

(larger is better). Upon further inspection here, it was found that small perturbations

(1% in a single design variable) in the initial design would cause the algorithm to end up

at one of the unsymmetric designs. The perturbation direction also mattered, a positive

perturbation would end up at one unsymmetric design while a negative perturbation

would end up at the other mirrored image. It is important to note that the choice

of perturbed design variable matters significantly since the gradient of the objective is

different for each design variable, although it this generally only influenced the number

of iterations it takes to move the design toward one of the unsymmetric design. These

results indicate that the optimization landscape is symmetric, at least near the initial

design at the center of the design space, and that the center is located on this symmetry.

The fact that better local optima exist on either side of the symmetry also indicates the

possibility that the final symmetric design lays at a KKT point that is a saddle within

the optimization landscape rather than an optimum. To test this, the final symmet-

ric design was restarted with a small perturbation in one of the design variables. The
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result of this perturbation can be seen in Figure 4.11d where an unsymmetric design

was reached. This new design is similar to the other unsymmetric designs, yet still with

significant differences, and had a similar final objective value. These results indicate

that the symmetric design is indeed at a non-optimal KKT point located at a saddle

point.

(a) (b)

(c) (d)

Figure 4.11: The three solutions to the P-wave to S-wave converter problem with a

P-wave entering a port on the left and an S-wave exiting a port on the right. A small

perturbation in the initial design space in the (a) positive and (b) negative directions

will push the set of design variables off the symmetry and into one of the mirror image

local optima which have equal and better objective values (z ≈ 51) than a final design

(c) that is symmetric (z ≈ 11). This indicates that the problem has a symmetric

optimization landscape. (d) A small perturbation in the final symmetric design pushes

the problem to an improved objective with a different unsymmetric design, indicating

that the symmetric design is located at a saddle point in the optimization landscape.



www.manaraa.com

71

It turns out, as is evidenced by creating small perturbations in the initial wave

converter design, that a design must be on a line of symmetry (or somehow land on one)

within the optimization landscape in order for it to find a KKT point that is a saddle.

If some set of design variables is on a symmetry in the optimization landscape then the

gradient will always point in a direction that will also be on a symmetry. Therefore,

ignoring information from the Hessian, the optimum will also be found on a symmetry.

If the Hessian is positive definite at the KKT point then this is not a problem because

the problem is locally convex, but if the Hessian is non-positive definite then a saddle

point has been reached; unknowingly so if no Hessian information is computed. The

Hessian, however, is expensive to compute, so it is usually avoided. Therefore the best

way to get away from the symmetry saddle point problem is to avoid it altogether.

Hence, this study shows that without a method to detect the presence of a symmetry,

starting from a random set of design variables can be desirable, although this is not

common practice in the field. It should be noted that this phenomenon is not unique

to wave propagation optimization problems, but an issue in optimization problems in

general.

4.5.5 Poynting vector objective function

In isotropic, homogeneous materials the direction of the Poynting vector coincides

with a wave’s direction of propagation. In heterogeneous materials, however, this may

not be the case, as multiple reflections will create many waves traveling in different

directions that may occupy the same space. As such, the complex norm of the dis-

placements at a location is not necessarily a good indicator of energy propagation in

elastic waves because of its lack of directionality and inability to differentiate between

traveling and standing waves. A more appropriate measure is the Poynting vector, a

measure of energy flux and direction at any location. While the physical advantages of

the Poynting vector are obvious, it has yet to be shown that it is an improvement over
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the complex norm objective function for elastic waveguide problems.

To study this issue, the bending waveguide problem with a 200x200 element

mesh surrounded by viscous damping boundary conditions is considered. The problem

is solved twice, once using the complex norm objective function and again using the

Poynting vector objective function. The complex norm objective function maximizes

the displacement norms normal to the exit port and minimizes those parallel to it.

The Poynting vector objective function maximizes the Poynting vector in the direction

leaving the exit port and minimizes its square in the direction parallel to the port.

After 200 iterations the design variables are penalized so that a “0-1” solution results.

The final material layouts, including the complex norm of the displacements and the

norm Poynting vector, are shown in Figure 4.12. While the final designs are somewhat

different, the effectiveness of the two objective functions is about equal as evidenced

by 94.6% and 93.2% efficiencies for the complex norm and Poynting vector objective

functions, respectively. This is also supported by Figure 4.13, which shows cross-section

plots of the Poynting vector at the input and output ports for both objectives functions.

The significant finding of this study is that both objective functions perform well

for solving elastic waveguide problems, regardless of the disadvantages of the complex

norm objective function. The primary reason for this is likely the location of these func-

tions at the boundary of the computational domain where viscous damping boundary

conditions remove the wave energy. Because of this the wave energy can only have one

direction (out of the domain) and so the complex norm objective cannot suffer from the

formation of standing waves. Objective locations on the interior of the domain would

likely produce a different result. In the waveguide examples, however, the goal is to have

the energy exit the domain at a certain location, so this is not a problem. Another issue

at hand is the computational expense of the Poynting vector objective function. Not

only must the Poynting vector be computed each iteration, but its gradients must also

be computed, both of which are computationally expensive tasks relative to the complex
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norm objective function. These findings are the primary reason why the examples in

this chapter use the complex norm objective function rather than the more physically

relevant Poynting vector objective function.

(a) (b)

Figure 4.12: Material layouts (top), complex norm displacement field (middle), and

Poynting vector field (bottom) for topology optimization problems using (a) complex

norm and (b) Poynting vector objective functions.
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Figure 4.13: Poynting vector profile at the (a) input and (b) output ports for the complex

norm (solid) and Poynting vector (dashed) objective functions.

4.6 Summary

The work in this chapter investigates a number of aspects of topology optimization

problems for wave propagation. In the examples, the most prominent and recurring fea-

ture was the presence of periodic material interfaces forming Bragg grating structures.

This illustrates the importance of Bragg reflections as a design driver for waveguide

problems. The influence of a free surface was also illustrated and showed how surface

waves and their interaction with bulk waves had a significant impact on the final design.

This is particularly evident in the differences between the normal and manufacturable

surface wave focusing problems. For in-plane problems the interaction between differ-

ent bulk modes was demonstrated and revealed that multiple mode conversions can also

play an important role in the optimal design. When this problem was further investi-

gated later in the chapter, it revealed that in some optimization problems a symmetric

optimization landscape can result, an interesting and important finding for the exis-

tence of local optima in waveguide problems. Also discussed in this chapter are the

limitations of waveguide designs posed by computational constraints from the extensive

models needed to resolve wavefields. These limitations create constraints on the types
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of waveguide problems that can be solved. Finally, it was shown that in the bending

waveguide problem, and likely all waveguide problems, that while the Bragg condition is

the primary design driver for the problem, in high-density meshes small features appear

that cannot be explained by the Bragg condition. These features, which are a fraction

of a wavelength is size, are suggested to cause local anisotropies in the design where

a passing wave sees the effective properties that the features create rather than the

features themselves. Creating these anisotropies could be beneficial for the objective,

making the creation of such features another design driver. Fortunately, however, the

impact of these small features on the efficiency of the design was shown to be very small

and such issues can be largely ignored for end result purposes. Nevertheless, it raises

an interesting and potentially useful aspect of wave propagation problems.
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Chapter 5

Topology Optimization of Band-gap Materials

5.1 Introduction

The content of this chapter investigates the use of two techniques for the design

of band-gap materials with topology optimization. To discern between these two design

techniques a distinction is made between band-gap structures and band-gap materials,

even though both can be considered band-gap materials in some sense. Band-gap struc-

tures correspond to topology optimization problems that are solved using time-harmonic

analysis where the objective is to minimize the transmission of waves through the band-

gap material design space, which may consist of a finite number of unit cells of the

material embedded in a host structure. Because this configuration models only a finite

number of unit cells, it is considered a band-gap structure. In a band-gap material, on

the other hand, the band-gap material unit cell is modeled with indefinite repetition.

This requires a different type of analysis and an objective function that operates directly

on the dispersion relation of the material. The goal of this chapter is to investigate the

connections between the design of band-gap structures and band-gap materials, the ad-

vantages and disadvantages of each, and to further develop the design methodology for

band-gap materials by investigating some of its properties including the physical drivers

of the problems.

This chapter is organized as follows: the analysis technique for band-gap material

problems based on Bloch-Floquet theory is presented along with the development of spe-
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cialized finite elements and sensitivity analysis to solve these problems. The modeling

approaches for band-gap structure and band-gap material problems are then verified and

followed with numerous examples of each technique used in design with topology opti-

mization. Next, variations on the form of the objective function for band-gap materials

is discussed and experiences with initial designs and solution techniques for band-gap

material problems are shared. The chapter is ended with a summary.

5.2 Analysis

The following subsection outlines the analysis methodology for band-gap material

problems based on Bloch-Floquet theory. This theory allows for the analysis of an

infinitely periodic unit cell, the core component of a band-gap material. This subsection

is followed by the sensitivity analysis procedure for this type of problem.

5.2.1 Band-gap material problems

Bloch-Floquet theory

The goal in the analysis of band-gap materials is to reproduce the dispersion rela-

tion for a structured periodic material. Mathematical analysis these types of phenomena

first started when wave propagation with periodicity in time was studied by Floquet

[52] in 1883, but it was Bloch [13] in 1928 who eventually generalized the findings to

spatial periodicity, hence Bloch-Floquet theory. The analysis of periodic materials was

further enhanced by the work done in solid state physics by Brillouin [17] in which he

developed the concept of Brillouin zones specifically for analysis of electron mobility in

atomic lattice structures. A number of methods exist for analyzing the band structure

of a material including multiple scattering theory [106], the finite difference time domain

(FDTD) method [75], and the transfer matrix method [16]. Here, it carried out using

finite elements and Bloch-Floquet theory [72, 98]. The analysis starts by assuming that

the structured material can be described by a single unit cell repeated indefinitely in at
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least one direction. Infinite periodicity in one direction constitutes a one-dimensional

band-gap material, whereas two independent directions a two-dimensional and three

independent directions a three-dimensional band-gap material. This periodicity, called

translational symmetry, is the primary underlying assumption when using Bloch-Floquet

theory. Given a unit cell with domain Ω =
[

−ai

2 ,
ai

2

]n ∈ ℜn and material properties

λ = λ (x), µ = µ (x), and ρ = ρ (x) as functions of location within the unit cell and a

lattice vector R = n1a1x̂1 +n2a2x̂2 +n3a3x̂3, where ai are dimensions of the unit cell in

the x̂i directions and ni are independent integers, then it is true that λ (x + R) = λ (x),

µ (x + R) = µ (x), and ρ (x + R) = ρ (x). Defining a translation operator TR such that

TRf(x) = f(x + R), one can show that its eigenfunctions are of the form eik·x:

TRe
ik·x = eik(x+R) =

(

eik·R
)

eik·x. (5.1)

Under this periodicity, however, k forms a degenerate set. Given knew = k+G, where G

is the reciprocal lattice vector G =
(

k1 +m1
2π
a1

)

x1+
(

k2 +m2
2π
a2

)

x2+
(

k3 +m3
2π
a3

)

x3

with integers mi, it can be shown that k and knew yield the same eigenvalues. Thus

it is only necessary to examine k within Ω, which is called the Brillouin zone. If one

assumes a form for the wave displacements:

u (x,k) = uk (x)eik·x (5.2)

then k becomes the wavevector and the displacements form harmonic plane waves trav-

eling in the direction of the wavevector. The displacements uk are periodic such that

uk (x + R) = uk (x) (from (5.1)) and are called Bloch modes (or Bloch waves or Floquet

modes/waves).

Brillouin finite elements

Specialized finite elements are needed to solve band-gap material problems be-

cause of the dependence of the stiffness matrix on the wavevector. Inserting (5.2) into

the equations of motion (4.9) with null forcing function is equivalent to (after dropping
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eiωt and eik·x terms) changing operators ∇ → ∇ + ik resulting in a new form for the

equations of motion:

(∇+ ik) (λ+ µ) (∇+ ik) · uk + µ (∇+ ik)2 uk − ω2ρuk = 0. (5.3)

In weak form this is written as:

∫

Ω
v · (∇+ ik) (λ+ µ) (∇+ ik) · uk + µv · (∇+ ik)2 uk − ω2ρv · ukdΩ = 0 (5.4)

with test function v and integrated over the volume of the unit cell Ω. Using the Galerkin

method, the resulting finite element equations yields the generalized eigenvalue problem:

K (k)uk

j = ω2
j Muk

j (5.5)

where the unit cell domain Ω is periodic with appropriate periodic boundary conditions

applied to satisfy (5.1), which is now a function of the wave vector. The application

of periodic boundary conditions can be performed in a number of ways. For example,

Hofer et al. [74] describe two procedures for implementing periodic boundary conditions

by using a Schur-complement method and a method that condenses boundary nodes.

In this dissertation, linear multi-point constraint equations are used to tie boundary

nodes. The stiffness matrix for isotropic materials can then be written with the material

properties separated from the wavevector as K (k) = λKλ (k) + µKµ (k) while the

mass matrix is formulated as usual. The resulting stiffness matrix K (k) is complex

Hermitian for a non-zero wavevector (real symmetric otherwise) and the separation of

the material properties from the wavevector makes calculation of the gradients simple,

i.e. ∂K(k)
∂si

= ∂λ
∂si

Kλ (k)+ ∂µ
∂si

Kµ (k). This formulation has been used in numerous studies

including for the formulation of photonic finite elements [4, 29] and was used by Halkjær

et al. [68], Hussein et al. [80, 82], and Sigmund and Jensen [146] for band-gap material

analysis and design.



www.manaraa.com

80

Dispersion relation

It is now possible to find the dispersion relation between the wavevector k and

the set of eigenvalues ω2
j that forms the dispersion relation for the band-gap material.

To fully describe the dispersion relation, equation (5.5) must be solved for multiple

values of k ∈ [−π/ai, π/ai]
n in the Brillouin zone. At this point it is possible to utilize

symmetries in the material design to reduce the region in which k must be evaluated.

As was the case with the translation operator, rotational and mirror symmetries in the

design also cause symmetries in the eigenvalue problem in which redundant eigenvalues

appear for a given wavevector. Thus the Brillouin zone can be reduced to a region in

which k can be evaluated without redundancy called the irreducible Brillouin zone [87].

As an example, take a two-dimensional square unit cell in the x-y plane of size 2a with

symmetries along the (1, 0), (0, 1), (1, 1), and (1,−1) directions. The Brillouin zone is

the whole square while the irreducible Brillouin zone is a triangular region one-eighth the

size as seen in Figure 5.1(a). Scanning the whole space of the irreducible Brillouin zone

is still costly, so it is customary to scan only its boundary, usually scanning from Γ to X

to M and back to Γ, to produce the dispersion relation 5.1(b). Other combinations of

symmetries may be used, including a one-dimensional symmetry for layered structures or

when only concerned with one direction of propagation (e.g. bars or beams). Hexagonal

arrays with triangular symmetries are also often used in these problems, but not in this

dissertation.
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Figure 5.1: (a) Brillouin zone and irreducible Brillouin zone (shaded region) for a ma-

terial with unit cell size 2a and symmetries along the (1, 0), (0, 1), (1, 1), and (1,−1)

directions. (b) An example dispersion diagram showing the dependence of eigenvalues

on the wavevector varying from Γ to X to M and back to Γ.

5.2.2 Sensitivity analysis for eigenvalue problems

The sensitivity analysis for eigenvalue problems is different that that for time-

harmonic problems. Here the sensitivities of the eigenvalues w.r.t. the design variables

are derived. Rearranging and reducing (5.5) for a single wavevector, the band-gap

material eigenvalue problem can be written as:

(K− ΛjM)Φj = 0 (5.6)

where Λj are the eigenvalues and Φj are the corresponding eigenvectors. Differentiating

this with respect to the design variables si results in:

(K− ΛjM)
∂Φj

∂si
+

(

∂K

∂si
− ∂Λj

∂si
M− Λj

∂M

∂si

)

Φj = 0 (5.7)

which can be pre-multiplied by the left eigenvector ΦL and rearranged to get the fol-

lowing equation.

∂Λj

∂si
ΦL

j MΦj = ΦL
j (K− ΛjM)

∂Φj

∂si
+ ΦL

j

(

∂K

∂si
− Λj

∂M

∂si

)

Φj (5.8)
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The term ΦL
j (K− ΛjM) satisfies the original eigenvalue equation and thus is a zero

vector reducing (5.8) to:

∂Λj

∂si
=

ΦL
j

(

∂K

∂si
− Λj

∂M

∂si

)

Φj

ΦL
j MΦj

(5.9)

for which if the mass and stiffness matrix are both self-adjoint (Hermitian) then the

right and left eigenvectors are also adjoint (i.e. conjugate transposes of each other,

ΦL
j = Φ∗

j , where (·)∗ denotes the conjugate transpose) and thus easily found as long as

the eigenvalues are simple, otherwise the derivative does not exist. If the eigenvectors

have been normalized to the mass matrix then Φ∗

jMΦj = 1 and (5.9) can be rewritten

as:

∂Λj

∂si
= Φ∗

j

(

∂K

∂si
− Λj

∂M

∂si

)

Φj (5.10)

where the partial derivatives of the stiffness and mass matrices can be evaluated either

analytically or numerically at an elemental level as described in the previous section.

With this expression, it is easy to use the eigenvalues and eigenvectors obtained from

(5.6) and on an elemental level obtain the eigenvalue sensitivities. In the case of degen-

erate eigenvalues, their gradients do not exist because the eigenvectors are not unique.

This can be fixed by using a method for computing directional derivatives for non-simple

eigenvalues [137]. In this document eigenvalue multiplicity is not treated differently as

eigenvalues in most cases become unique after a couple iterations of the optimization

algorithm or with the use of a random initial topology.

5.3 Verification

5.3.1 Material properties

The properties of materials used in this chapter are given in Table 5.1.
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Table 5.1: Material Properties

Material E-Elastic Modulus (GPa) ν-Poisson’s ratio ρ-Density (kg/m3)

Silicon 162.9 0.2226 2331

Aluminum 70.38 0.3454 2697

Tungsten 409.83 0.2799 19260

Silica 73.0 0.17 2200

Material 1 4e9 0.34 1000

Material 2 20e9 0.34 2000

5.3.2 Verification with the classical Bragg grating

While the analysis of time-harmonic wave propagation was verified in the previous

chapter, the classical Bragg grating band-gap structure provides the perfect example to

verify the topology optimization procedure. This problem is solved on a 5cm long

x 1cm wide domain with periodic boundary conditions on the top and bottom and

viscous damping non-reflecting boundary conditions on the left and right boundaries.

The design domain is discretized with 9768 finite elements with each element assigned

to its own design variable. A 400 kHz harmonic load is applied at the left boundary,

which introduces a pressure wave into the domain. The objective function consists

of minimizing the sum of the squares of the displacement norms (4.27) along the right

boundary (see Figure 5.2a) by finding the optimal pattern of aluminum and silicon. The

solution yields a repeated pattern of silicon and aluminum layers (Figure 5.2b). These

layers are the same dimension as would be provided by using the Bragg condition 2.7

for these materials and at this frequency (i.e. the unit cell spans one-half wavelength).

A frequency spectrum analysis (Figure 5.2e) reveals that the transmission of elastic

waves through the optimized design exhibits the expected band-gap around the applied

frequency within which the wave gets reflected but outside of which other frequencies
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pass through the structure with little to no loss.

(a) (b)

(c) (d)
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Figure 5.2: (a) Problem setup for the validation of the classic Bragg grating with elastic

waves. (b) The final design shows alternating layers of silicon (red) and aluminum

(blue). (c) Wavefield in a homogeneous structure shows the energy passing through,

while in the final structure the waves are attenuated as shown in the (d) complex norm

of the wavefield. This is also shown by a (e) frequency sweep of the wave transmission

through the structure.

5.3.3 Comparison with published experimental results

To verify the eigenvalue analysis methodology for band-gap material problems the

technique is compared to the published results of an experimental study of a bulk wave
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band-gap material made of silica with tungsten scatterers [121]. The unit cell for this

design consists of a square with 45µm lattice constant and circular scatterers of radius

14.4µm concentric around a manufacturing release hole of 5µm as shown in Figure 5.3a.

The band-gap material is suspended above the substrate to prevent the creation of

surface waves and bulk waves were excited and received by piezoelectric couplers. Using

the Bloch-Floquet analysis technique for in-plane modes of propagation, the dispersion

diagram in Figure 5.3b is found, revealing a large band-gap from 57-75 MHz between

modes five and six. A smaller band-gap between modes three and four is also seen.

Overlaying this with the transmission measurements of the experiment (Figure 5.3c,

reproduced from [121]) shows very good agreement between the two.
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Figure 5.3: (a) This unit cell design results in (b) a dispersion diagram with three

distinct band-gaps (gray regions). (c) A comparison with the experimental results of

Olsson et al. shows good agreement where gray areas are bands of existing modes which

lie on either side of the band-gap.

5.4 Applications

5.4.1 Objective functions

Band-gap structures

Band-gap structure topology optimization problems are treated in the same way

as for the waveguide problems in the previous chapter in that the complex norm objective

function 4.27 is used. Here, however, the objective is minimized at a location opposite

to the incoming wave with the idea that the absence of the wave indicates that it was
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reflected and that the intervening material/structure acts as a band-gap material for

the frequency of interest. The globally convergent method of moving asymptotes [151]

is used as the optimization algorithm.

Band-gap materials

The objective function used in the band-gap material examples to maximize band-

gaps is a modification of that used by Bendsøe and Sigmund [11] and Sigmund and

Jensen [146]. The formulation is:

max
si

β2 − β1

s.t.
(

K (k)− ω2M
)

u = 0 k ∈ [Γ−X −M − Γ]
[

ω2
j+1 (k)

]

m
≥ β2 m = 1 . . . nm

[

ω2
j (k)

]

m
≤ β1 m = 1 . . . nm

(5.11)

where ωj is the jth eigenfrequency in order of increasing frequency, m corresponds to

the mth wavevector in the nm-times discretized wavevector space, and β1 and β2 are

independent scalars that act individually on the lower and upper constraint bounds,

which locate the edges of the band-gap. The sensitivities of this objective and set of

constraints are found from (5.10). The value of the objective can be negative, indicating

that a band-gap does not exist for the current design. The constraints, however, change

with the design and their formulation does not require a pre-existing band-gap, unlike

other objective formulations [29, 30]. The optimization problems using this objective

are solved with either a sequential quadratic programming algorithm [60, 135] or the

globally convergent method of moving asymptotes [151].

5.4.2 Band-gap structure examples

The following examples illustrate the design of band-gap structures that are cre-

ated with the same objective function that was formulated for waveguides. In essence,

these structures are also waveguides (as opposed to band-gap materials), albeit with
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frequency dependent characteristics. The goal of these problems is to alter the fre-

quency response of the structure in a desired fashion by using (4.27) to minimize the

complex displacement norms after the energy has passed through the region of interest.

In some cases a multi-objective problem is formulated to solve the problem at multiple

frequencies.

Three-dimensional wire Bragg grating

In this extension to the classic Bragg grating problem, a three-dimensional wire

Bragg grating is considered. The problem setup is shown in Figure 5.4a and consists of

a rod 4 cm long with a square cross section of 1cm x 1cm. The domain is discretized into

10,000 brick elements with free lateral sides and viscous damping boundary conditions

at the two ends to make it effectively infinite in length. A uniform harmonic load of

1.6MHz is applied at one of the ends to introduce a pressure wave as well as more com-

plicated surface and edge modes (see, for example, [120]) that travel down the length of

the wire. Each element in the computational domain is assigned its own design variable

allowing it to change its material properties independently between aluminum and sili-

con; however the non-reflecting boundary conditions have constant material properties

of silicon. The objective function is formulated as (4.27) and minimized with the set

of objective nodes being those that lie on the boundary of the computational domain

opposite the harmonic load. The resulting material layout obtained from topology op-

timization is shown in Figure 5.4b, which shows material property isosurfaces. Parts of

the wire enclosed by red surfaces indicate the presence of silicon while those between

blue indicate aluminum. An important aspect of this result is the influence of the finite

lateral boundaries and associated surface waves on the material distribution. Whereas

using the Bragg condition would result in a series of planar material interfaces along

the length of the wire, the presence of surface modes and the difference in wavespeed

between the surface and bulk modes results in non-planar interfaces. Figures 5.4c and

5.4d show the wave field in the homogeneous and optimized material domains, respec-
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tively. In the former the waves pass through the wire, while in the latter neither the

bulk nor surface waves are able to pass and are reflected.

(a) (b)

(c) (d)

Figure 5.4: (a) Topology optimization problem setup for a long square wire Bragg

grating with harmonic load on one end of the wire and optimization objective node

set at the other end. (b) Results of topology optimization for a 3D Bragg grating wire.

Surfaces indicate interfaces between volumes of silicon and aluminum. Volumes enclosed

by red surfaces indicate the presence of silicon while blue surfaces indicate aluminum.

The material distribution differs from a typical Bragg grating because of the influence

of the surface waves. (c) Wave field shown by displacement magnitude isosurfaces and

slices through a homogeneous material is (d) filtered when it passes through the final

design.

Surface wave filter

In this example, a two-dimensional problem of a layer on a substrate is considered
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and the use of a patterned thin film to impact the propagation characteristics of surface

waves is explored. Specifically, a surface wave is excited via a harmonic load normal to

the free surface. In a homogeneous half-space this will generate a Rayleigh wave that

propagates outward from the source along the surface with the amplitude not being

affected by the propagation distance. The Rayleigh wave will carry about two-thirds of

the energy radiated from the source, but in addition, bulk shear and compression waves

will be generated [62]. The objective is to seek the material layout of the thin film that

will filter the surface wave at a given frequency or range of frequencies; this is analogous

to the Bragg grating problem but for surface waves.

In the setup of the problem, the computational domain consists of a rectangular

region 2.5 cm deep and 8 cm long with a free surface on top and PMLs surrounding the

other three boundaries to create a computational two-dimensional half space (Figure

5.5). A 5mm film region at the top of the domain serves as the design domain within

which the optimal layout of silicon and aluminum will be determined. The remainder

of the computational domain, the substrate, is silicon with material properties fixed

throughout the design optimization process. The entire computational domain is mod-

eled with 120,000 elements. Within the film design variables are assigned to 0.1mm

wide columns of elements so that each column will have the same material properties.

This allows for what would be a manufacturable design using standard thin-film pro-

cesses. The 0.61 MHz harmonic excitation load is applied in the vertical direction at the

upper left corner of the computational domain. A “runway” region is created between

the source and the design domain to allow for a Rayleigh wave to fully develop and to

minimize the influence of bulk waves in the optimization process. Another runway is

also created after the design domain and before the set of optimization objective nodes

(denoted by L in Figure 5.5) for the same reasons. The wavefield in a homogeneous

material for this geometry is shown in Figure 5.6a. The objective function is formulated

as (4.27) and minimized so that surface wave energy will not reach this location at the
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applied frequency.

Figure 5.5: Problem setup for a surface wave filter based on thin film etching and

deposition on a halfspace. Elastic surface waves are excited by a harmonic force f at the

left, pass through the thin film with the objective of having no energy reach objective

location L.

Two questions are investigated for the optimization of this surface wave filter.

The first question is: How does the effectiveness of an optimized filter compare to that

of a filter created from simple Bragg grating ideas, i.e. a regular, patterned structure

based on the Bragg condition? The second question is: Using topology optimization is it

possible to create a larger band-gap while keeping the same effectiveness, not increasing

the domain size, and not changing the problem characteristics?

To answer the first question, a finite regular structure is first created using Bragg

condition for the Rayleigh wavelength at the design frequency of 0.61 MHz. The trans-

mission of energy through the domain is then calculated over a range of frequencies.

This design is shown in Figure 5.6b, along with the wavefield through this structure.

The results of the optimization problem are then shown in Figure 5.6c. The transmis-

sion spectrums comparing the two designs in Figure 5.7 show only a weak band-gap for

the Bragg grating design while the optimized design is much more effective even though

the design is not strictly periodic.
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(a)

(b) (c)

Figure 5.6: (a) Wavefield in homogeneous medium of this configuration. Material layout

of silicon (blue) and aluminum (red) for surface wave filters (top) and corresponding

wavefield (bottom) for designs created using (a) the Bragg condition and (b) topology

optimization.
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Figure 5.7: Transmission as a function of frequency for the Bragg grating (solid) and

optimized (dots) designs.

In order to answer the second question, two additional optimized structures were
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created at frequencies 5% below and 5% above the aforementioned design frequency.

The resulting structures are shown in Figures 5.8a and 5.8b, respectively. If the three

optimized structures of this example were lined up in series then a broader band-gap

centered at the middle frequency would be created, but the structure would be three

times the length. Instead of doing this, a new problem is formulated that takes all three

frequencies (taken as three different load cases) into account but solves the problem

on the same sized structure. This results in the material layout in Figure 5.8c and a

transmission profile and associated band-gap shown in Figure 5.8d. While the widened

band-gap design is not as effective as the individual optimized band-gap structures, it

still performs better than the Bragg grating structure over that range of frequencies.

It is important to note the non-regularity of the material layouts for the optimized

designs. While a Bragg grating is intended to reflect an incoming wave by having

material interfaces located at half-wavelength multiples for an incoming wave, a more

complex mechanism seems to be at work in these designs.
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Figure 5.8: Optimized designs for surface wave filters at (a) -5% and (b) +5% of the

original design frequency of 0.61 MHz as well as (c) the widened band-gap case that

takes all three frequencies into account in the objective. (d) The frequency sweep of

surface wave transmission through the Bragg condition structure (solid), the optimized

structure at the same design frequency (dots), optimized structures at -5% (dash) and

+5% (dash-dot) of the design frequency, and the optimized structure which provides

a widened band-gap that covers all three frequencies and still improves on the regular

structure (bold solid).

Surface wave band-gap material

With a similar goal in mind as the previous problem, the design of a unit cell

for a surface wave band-gap material is desired here. The problem setup is similar to

the previous problem with the exception that eight 1mm x 1mm unit cells are placed

side by side within a 1mm thick layer on top of the substrate. The goal is to find the

distribution of silicon and aluminum within the unit cell that minimizes the amount

of wave energy that is allowed to pass through it. The substrate is modeled 1.5mm
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thick and is surrounded by PMLs to simulate the computational halfspace. Within each

unit cell, which is 50 elements thick and 25 elements wide, the design variables are

mirrored so that each cell is symmetric, resulting in only 625 design variables in total.

A 0.48MHz surface load and a 1mm runway precede the series of unit cells and another

1mm runway follows and contains location of the objective function, which serves to

measure the surface wave transmission through the unit cells by measuring the norm of

the displacements. The initial design is started with all design variables at a value of

0.5.

The resulting material layout for this optimization problem is shown in Figure

5.9a. The pattern that develops looks similar in structure to the typical band-gap

material for bulk waves in that it is composed of alternating square-ish inclusions of

aluminum embedded within the silicon host. This is unusual because the inclusions

formed themselves independently within each of the larger unit cells. The important

difference, however, is that at the free surface the inclusions are much thinner. The depth

of these surface inclusions also seem to coincide with the depth of the characteristic

crossing point for the surface wave displacements at this frequency. The crossing point

is the location where surface wave displacements parallel to the surface are zero and the

wave motion changes from retrograde to not retrograde (see Graff [62]). The importance

or correctness of this observation, however, is unknown and has not been quantitatively

verified. The wavefield in a homogeneous domain and the final design are shown in

Figures 5.9b and 5.9c, respectively. A plot of wave transmission for a range of frequencies

around the design frequency is also given in Figure 5.9d. The transmission at low

frequencies that is higher than unity is likely due to reflections of bulk modes produced

by the load that are either converted into surface waves or picked up at the receiver

end of the structure. This inability to isolate certain modes of propagation is one of the

concerns of using time-harmonic problems to design band-gap materials.
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Figure 5.9: (a) Final design of a surface wave device using unit cells. (b) Wave field

norm in homogeneous silicon. (c) Wave field norm in the final design showing a drastic

decrease in wave energy reaching the far end of the domain. (d) Transmission plot of this

design for a range of frequencies also shows a drop in wave transmission, particularly at

the design frequency of 0.48 MHz.

5.4.3 Band-gap material examples

The following set of examples illustrate the creation of band-gap materials via

topology optimization. The goal of these examples is to enlarge existing or create new

band-gaps through manipulating the eigenvalues that make up the dispersion relation.

Optimization of published results for in-plane band-gap materials

Starting with the idea from the verification example of section 5.3.3, topology

optimization is used to see if it is possible to create band-gaps without the restriction of

using a circular inclusion as in the original design. Two problems are considered here,

the first is formulated to create a band-gap between the fifth and sixth modes, while the

second is to create a band-gap between the eighth and ninth. The problem setup for is

shown in Figure 5.10. For both problems, the initial solution is randomly generated and
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(5.11) is used as the objective function with the wavevector space discretized into eight

wavevectors. In the solution to the first problem, the final band-gap is from 40-54 MHz,

smaller than the band-gap for the circular inclusion in the verification example, but

shifted significantly lower in frequency making the relative size of the band-gap larger.

Additionally, the small band-gap between modes three and four disappears as compared

to the original design. This is shown in Figure 5.11a. In the second problem, creating

a band-gap between modes eight and nine resulted in a band-gap from 68-78 MHz.

Interestingly, a large band-gap between modes five and six is also produced, as shown

in Figure 5.11b. The final material layouts for these two examples are quite different

with small feature sizes more prominent in the second problem due to higher frequency

modes with shorter wavelengths that must interact with the material structure.

Figure 5.10: Setup for the design of a bulk wave band-gap material.
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Figure 5.11: Topology optimization modification of the verification problem design in-

tended to (a) create a band-gap between modes 5 and 6 and (b) between modes 8 and

9. Shown are the (top) final material layouts of tungsten (red) and silica (blue) and

(bottom) the corresponding dispersion relations.

Out-of-plane band-gap materials

The band-gap material design given by Olsson et al. [121] was based on an ad

hoc design methodology that is typically seen in the literature [87]. In such designs, the

band-gap is maximized by using materials with a large acoustic impedance mismatch,

which creates more wave reflection at material interfaces. In the previous problem

in-plane propagation modes were considered. Here, a series of problems consider out-

of-plane wave propagation is considered for which only SH shear modes exist and are

decoupled from the in-plane modes. The same geometry and materials are used as in
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the previous problem. The goal is to find the material layouts for five unit cell problems

such that band-gaps are created between two sequential bands for the first six bands

in the dispersion relation. The optimization problem starts with an initial design of

homogeneous silica and 18 wavevector points are used. The final material layouts are

shown in Figure 5.12. The first few design solutions show a resemblance to many of the

simple ad hoc methodology designs found in the literature in that they consist of simply

shaped inclusions. For designs where higher modes are created, however, some of the

features become smaller and less intuitive in their placement and shape. For example,

in Figure 5.12e the features form a non-intuitive clover shape, which produces a very

large band-gap of about 20MHz present between the fifth and sixth modes. In one case,

shown in Figure 5.12d, a band-gap could not be directly created between two desired

modes using topology optimization. Interestingly, however, the design in Figure 5.12a

exhibits a band-gap between these modes, indicating that it is possible. The reasons for

this are unknown, but it is likely that the algorithm is either stuck in a local optima or

progresses to a design where it is not able to create a feasible design space. As will be

demonstrated later, it may be possible to fix this situation by using a different initial

design.
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Figure 5.12: Material layouts of silica (blue) and tungsten (red) and dispersion curves

for band-gaps created via topology optimization between modes: (a) 1-2, (b) 2-3, (c)

3-4, (d) 4-5 (no band-gap could be directly created), and (e) 5-6.

Beam/plate band-gap material

In a study of how free surfaces affect the band-gap material topology optimiza-
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tion problem, a horizontally periodic array of unit cells with free surfaces on the top

and bottom is considered. This configuration leads to an infinite beam or plate-like

structure (with optimization performed on the through the thickness of the plate or

beam) which has the capability of propagating bulk waves along its length as well as

other modes including surface waves and Lamb or plate modes. This example therefore

not only optimizes for bulk modes but these other modes as well. Periodic boundary

conditions are placed only on the left and right sides of a 1m square domain of 50x50

in-plane Brillouin elements while free boundary conditions are on the top and bottom

as shown in Figure 5.13. Horizontal mirror symmetry within the unit cell is used in

assigning design variables so that the wavevector space can be reduced. The material

properties are allowed to vary between Material 1 and Material 2 of Table 5.1. The opti-

mization problem is formulated so that the third and fourth modes would be separated

by a maximized band-gap. Figure 5.14 shows the results of this topology optimization

problem including the dispersion diagram for a homogeneous material of Material 1, the

final design, and the corresponding dispersion diagram with band-gap. The frequency

values in the dispersion diagram are normalized such that Ω = ωa/
√

E/ρ where a is the

size of the unit cell and E and ρ correspond to the values for Material 1. The material

layout of the unit cell clearly shows the influence of plate modes on the optimal solution

where the material distribution is different near the free surfaces than in the middle. If

only bulk modes were present then the layout would consist of only rectangular blocks

of material, similar to that for the classical Bragg grating. This problem is also very

similar to the Bragg grating wire example of the previous subsection.
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Figure 5.13: Problem setup for a beam or plate band-gap material.
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Figure 5.14: (a) Dispersion diagram in homogeneous silicon which includes the influence

of plate modes. (b) Final material distribution (Material 1-blue, Material 2-red). (c)

Dispersion diagram for the optimized band-gap material showing a band-gap between

the third and fourth modes. (d) An example of what a structure would look like using

this band-gap material. This beam/plate would not transmit wave energy within the

frequency of the band-gap.

Mode filtering material

In this example the in-plane bulk band-gap material problem is revisited with a
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twist on the objective function. The problem setup is shown in Figure 5.16 where the

materials used are Material 1 and Material 2 of Table 5.1. Rather than trying to create

a band-gap between two adjacent modes, the goal here is to create a band-gap such

that only one mode of propagation exists within a certain frequency band. To do this,

the objective function 5.11 is modified so that the third eigenvalue corresponding to

the wavevector point Γ as well as the fourth eigenvalues elsewhere are pushed to higher

values. At the same time, the third eigenvalues for the wavevector points between X

and M and the second eigenvalues elsewhere are pushed to lower values. The idea is

to create a region where only a single shear mode exists by creating a band-gap for all

other modes. The resulting material layout and dispersion diagram are shown in Figure

5.16. In the dispersion relations a partial band-gap is present between 117 kHz and 135

kHz, where only a shear mode exists.

(a)

Figure 5.15: Problem setup for a mode filtering material.
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Figure 5.16: (a) Material layout of a mode filtering material results in a frequency band

where only shear waves will pass through the material.

To illustrate the mode filtering capabilities of this material, a slab consisting of

three layers of the mode filtering material is placed in a domain of Material 1 with

periodic boundary conditions on top and bottom and viscous damping boundary condi-

tions on the left and right as shown in Figure 5.17a. Time-harmonic pressure and shear

waves are excited on the left side at a Frequency of 125.9 kHz, which corresponds to

the middle of the filtering band. The resulting wavefields are also shown plots of the

complex norm magnitude of the displacements and the Poynting vector magnitude in

Figure 5.17. For the shear wave the wave passes through the material, while for the

pressure wave the majority of the wave is reflected. More of the wave energy would

be reflected if more layers of the mode filtering material were used. These examples



www.manaraa.com

105

demonstrate how topology optimization can be used to design for not only frequency

selective behavior but also a potentially desirable mode selective behavior in a material.

(a)

(b) (c)

Figure 5.17: (a) Illustration setup for a slab of mode filtering material. Pressure (top)

waves pass through and shear (bottom) waves do not as shown in the fields for the (b)

complex norm magnitude of the displacements and (c) Poynting vector magnitude.

5.5 Methodology Refinement Studies

This section details some unreported issues and observations in solving band-

gap material topology optimization problems. These issues aim to provide a greater

understanding of band-gap material topology optimization problems.

5.5.1 Band-gap material objective formulation

In previous uses of topology optimization to create band-gap materials, different

objective functions were used. Bendsøe and Sigmund [11] and Sigmund and Jensen [146]
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use an objective formulated as:

max
si

β

s.t.
(

K (k)− ω2M
)

u = 0 k ∈ [Γ−X −M − Γ]
[

ω2
j+1 (k)

]

m
≥ β m = 1 . . . nm

[

ω2
j (k)

]

m
≤ β m = 1 . . . nm

(5.12)

where β is a number corresponding to some squared frequency, j is the jth eigenfrequency

ω in order of increasing frequency, and m corresponds to the mth wavevector in the nm-

times discretized wavevector space. This objective, they claim, is equivalent to that used

Cox and Dobson [29]. This objective formulation, however, suffers from some serious

drawbacks and limitations. Firstly, as β is maximized, it only pushes on the upper

bound of the constraints (i.e. the smallest of the ω2
j+1 eigenvalues), but the lower bound

has no effect unless there is no band-gap in the first place at which point it can serve to

create one. As far as can be inferred from the limited information given in the papers,

however, the initial design started with a band-gap as was the intended case in [29], and

so the lower bound was likely never used. Secondly, this objective is not guaranteed to

produce a band-gap as the lower edge of the gap is allowed to follow the upper edge

without penalty, thus the objective is never able measure whether a finite band-gap

actually exists. The modified objective function 5.11, on the other hand, improves on

the former in that β2 pushes the upper bound up while at the same time β1 pushed

down on the lower bound independently. This allows a band-gap to be created directly

between any two modes. It also has the advantage that it is a direct measure of the

band-gap size and can be used where there is not initial band-gap in which a feasible

solution is created in moving the constraints.

An interesting aspect of this problem exists for the special case when trying to

separate two modes where one is tied to a rigid body mode (i.e. ω = 0 at k = Γ). In this

situation there exists an inherent upper bound on the lower mode through the physics

of the problem. As an informal proof: there exists an upper bound on the wavespeed in
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the problem, which is equal to the wavespeed c of the faster mode (the pressure mode)

of the two design materials. The longest path the wave can take corresponds to the

wavevector point k = M on the unit cell (see Figure 5.1) for which the corresponding

frequency is ω ≤ kc |k=M , which creates an upper bound on the lower (rigid body

rooted) mode. When this is the case then 5.12 works well because when β reaches this

inherent upper limit a band-gap must be created in order for β to increase.

5.5.2 Band-gap material optimization guidelines and local optima

An important observation for band-gap material problems is that they are highly

dependent on initial design. Starting with a design that already has a band-gap is an

obvious advantage and can produce good results as shown by Cox and Dobson [29],

Bendsoe and Sigmund [11], and Sigmund and Jensen [146]. But their ability to create

a larger band-gap depends on a preliminary step of choosing a readily known band-gap

structure, which already solves the band-gap problem. What if, however, one wants to

create a band-gap either from a material with no pre-existing band-gap or between two

modes where there is not a band-gap? In this case a more robust objective formulation

that does not depend on the presence of pre-existing band-gaps or inherent physical

bounds is needed, such as (5.11). The only condition that must be met is that eigenvalue

degeneracies must not be present. The obvious solution to this is to start with a random

set of design variables. Experience with a random initial designs have generally yielded

a reluctance to converge to any solution, or at least have difficulty converging, and often

result in designs that have little coherence and large areas of “gray” elements. Starting

from a non-random design, however, seems to ease these troubles, not only when trying

to make an existing band-gap larger when that case is applicable, but also when trying

to create a band-gap between two modes where no band-gap exists.

An indication of the degree to which local optima are present for these problems

is shown in Figure 5.18, which is based on the same problem from the out-of-plane
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band-gap materials section of 5.4.3. The objective is to create and maximize band-gap

between modes two and three, while considering three examples with different initial

designs. The first of these examples already has a band-gap, but not between the modes

of interest, while the other two start with different homogeneous designs. In the first

example, a band-gap of about 18MHz is created, while a band-gap of 25MHz is created

in the second example, although the two final designs are completely different and both

well converged. In the third example, however, a band-gap is never created, even though

the final design is well defined. These results indicate that 1) the final material layouts

are not unique but depend on the initial design and 2) even if a well-defined structure

develops a band-gap is not guaranteed to be present. Both of these facts reveal that

band-gap material optimization problems are non-convex with strong local optima, an

issue that must be taken into account when using gradient-based topology optimization

to design these materials.



www.manaraa.com

109

    
0

20

40

60

80

100

120

F
re

qu
en

cy
 (

M
H

z)

Γ ΓX M

        
0

20

40

60

80

100

120

F
re

qu
en

cy
 (

M
H

z)

Γ ΓX M

(a)

    
0

20

40

60

80

100

120

F
re

qu
en

cy
 (

M
H

z)

Γ ΓX M

0

20

40

60

80

100

120

F
re

qu
en

cy
 (

M
H

z)

Γ ΓX M

(b)

    
0

20

40

60

80

100

120

F
re

qu
en

cy
 (

M
H

z)

Γ ΓX M

0

20

40

60

80

100

120

F
re

qu
en

cy
 (

M
H

z)

Γ ΓX M

(c)

Figure 5.18: Examples of local optimal solutions in band-gap material optimization

problems. The problem is set up to create a band-gap between modes two and three

starting with three different initial designs. (a) Initial design that already has a band-

gap, but not between the modes of interest, and so one must still be created. The

final design has a band-gap of about 18MHz. (b) Design starting of material 1 with

no initial band-gap results in a different final design with a band-gap that is larger at

about 25MHz. (c) Even though a well-defined structure results using an initial design

of material 2, a complete band-gap is never found because the optimization algorithm

is unable to create a feasible domain.
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Also important to note regarding this type of optimization problem is the dis-

cretization of the wavevector space. In a dispersion diagram at low frequency there are

few modes present, but as frequency increases the number of modes (called the density

of states) also increases drastically. As such, it takes a much finer discretization of the

wavevector space to discern higher modes from one another. Under topology optimiza-

tion this is especially true because the constraints depend on constraining the whole

mode, which requires a high degree of resolution when a mode undulates significantly.

Experience has shown that high modes with low wavevector resolution have difficulty

converging to a clear “0-1” solution. Mesh resolution suffers from a similar issue, primar-

ily because for higher modes the mode shapes and wavelengths are smaller, which often

correlates with a smaller feature size in the band-gap material. As a result, designing

band-gap materials with topology optimization at higher frequencies with the same unit

cell size will require much higher resolution in both the physical and wavevector spaces.

5.5.3 Surface wave band-gap material problem

Given the successful design of a variety of band-gap materials using topology

optimization in bulk wave and plate wave geometries, it is only natural to attempt to

create surface wave band-gap materials using the same technique. The setup for this

problem is shown in Figure 5.19. The difficulty with this problem is in modeling the

infinite boundary condition at the bottom of the domain. There exist two options for

this: viscous damping boundary conditions and PMLs. The analysis for this type of

problem was shown previously by Hofer et al. [74] in which they use viscous damping

boundary conditions. In replicating their results, it was found that while the correct

eigenvalues were found, the viscous damping boundary conditions did not correctly

model an infinite boundary as shown by the eigenvectors. The modes revealed by

the eigenvectors are shown in Figure 5.20 for what should be a Rayleigh wave in a

homogeneous material. From this figure, it is clear that two Rayleigh waves form, one
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at the top and one at the bottom surface, which explains why the correct eigenvalues

were found for the problem. Also noticeable from these figures is that the viscous

dampers slow the surface wave on the bottom surface, which indicates that they are

working, but not as intended. While it is possible to find the surface wave modes for

this problem, using these results for design purposes is not possible because both the

top and bottom surface waves would interact with the design domain, which would not

provide the correct modeling conditions for the problem we want to solve.

Figure 5.19: Unit cell setup for the design of a surface wave band-gap material.

(a) (b)

Figure 5.20: Wavefields for (a) x- and (b) y-displacements from the eigenvector solution

for the surface wave band-gap problem with viscous damping boundary conditions.
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In another attempt to correctly model this problem, PMLs were used to model

the infinite boundary condition. In this case, the PMLs create many spurious modes

that are unfortunately not distinct from the modes of interest. The distribution of

eigenvalues in complex space is shown in Figure 5.21 for both the viscous damping

boundary conditions and the PMLs. While the viscous damping boundary conditions

provide the correct eigenvalues as noted previously, the eigenvalues of the spurious

modes of the PMLs are all over the place, although the eigenvalues of interest can be

seen in the background of the figure. This makes the solution of this problem with PMLs

intractable. As a result, the design of surface wave band-gap materials using topology

optimization is not possible using these analysis techniques and a new analysis method

will be needed in order to solve this problem.
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Figure 5.21: Distribution of eigenvalues for real an imaginary parts of the wavevector

for a homogeneous material using (a) viscous damping boundary conditions and (b)

PMLs to approximate a semi-inifinite domain in the band-gap material problem.

5.6 Summary

In this chapter two variations of band-gap material topology optimization prob-

lems were investigated. The first, band-gap structures, were designed by minimizing the
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amount of wave energy passing through the material through a measure of its trans-

mission. In the second, band-gap materials, the dispersion relation was directly ma-

nipulated using a new objective function whose benefits over previous functions was

discussed. While the solution methods for these two problems were completely differ-

ent, similarities were found in the results. This was particularly illustrated through

problems with free surfaces. In these problems, such as the wire Bragg grating and the

beam/plate band-gap material, the presence of surface waves and modes had a signif-

icant effect on the final design, especially near the surfaces. These modes, and their

variation on the Bragg condition, were thus the primary design drivers for these types

of problems. In a variation of the band-gap material problem, the design of a mode

filtering, or mode selective, material was demonstrated. This example showed that the

band-gap material problem formulation is not limited to only band-gap material prob-

lems, but can be extended to serve other purposes. Also discussed were some limitations

of the methodology for band-gap materials. First and foremost is the presence of strong

local optima where it was shown that three different initial designs resulted in three

different final designs, one of which is infeasible. A second issue with these problems

was described in the attempt to design a surface wave band-gap material. While this

may eventually be overcome, in its current state it represents an intractable problem

for topology optimization.
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Chapter 6

Topology Optimization of Wave Propagation and Vibration in

Piezoelectric Solids

6.1 Introduction

In this chapter a general methodology is developed to analyze and design wave

propagation and vibration phenomena in systems incorporating piezoelectric solids.

These include vibrating piezoelectric energy harvesting systems based on multilayer

plate and shell structures with piezoelectric layers coupled to an external harvesting

circuit as well as waveguides and band-gap structures using piezoelectric materials. The

approach facilitates the design of piezoelectric systems by tailoring the layout, both

in the plane and through the thickness, of single or multilayer structures consisting

of structural layers, piezoelectric layers, electrodes, and electrical circuit parameters.

Objectives can be formulated in a flexible algebraic manner, and include, for example,

open circuit voltage, power output/dissipation, and functions of displacements. While

the design of waveguides and band-gap structures is not new, the methodology for using

piezoelectric materials in such structures is new. This is also an original methodology

for the optimal design of piezoelectric systems by using topology optimization to design

both the layout of piezoelectric and structural materials on layered plate harvesting

structures as well as the external circuit to which it is connected. The goal of this

chapter is to explore the use of piezoelectric materials in dynamic systems, developing

a methodology to solve both wave propagation and vibrations problems.
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This chapter is organized as follows: the following section details the mechanical,

piezoelectric, electrode, and circuit models and their formulation in the finite element

method/lumped parameter approach, including how the various fields are coupled. This

modeling approach is then validated through comparison to experiments in the literature

for both vibrating beam and plate structures. This is followed with application examples

that demonstrate the versatility of the approach and explore the behavior of piezoelectric

energy harvesting and wave propagation systems. Finally, the findings of this chapter

are summarized.

6.2 Analysis

Although the analysis approach outlined herein admits both shells and plates, the

structures will be referred to as plates in the following, even if they are curved. In the

analysis it is assumed that both the structural and electrical responses of the systems

are linear and excited by a harmonic load, allowing for time-harmonic analysis. The

finite element method is used to model the fully coupled components of the piezoelectric

structure, namely the structural dynamics, electromechanics, and electrode conduction,

while a lumped parameter approach is used to model the circuit dynamics (see Figure

6.1). An important feature of the approach is the explicit modeling of the feedback from

the circuit to the piezoelectric structure in addition to the response of the circuit. The

piezoelectric finite element is a layered plate formulation similar to that described by

Marinkovic et al. [109], but extended to include electrode conductivity and for use with

topology optimization.
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Figure 6.1: Components of a piezoelectric structure as well as their coupling, including

the coupling to (dash-dot line) and feedback from (dotted line) the circuit.

6.2.1 Field equations

The piezoelectric model can be separated into three sub-models: the mechanics

and coupled electromechanics of the piezoelectric structure, electrical conduction in

the electrode, and the electrical circuit model. These sub-models are then coupled

through their individual electrical interface conditions. The electrodes are explicitly

modeled so that electrical connectivity is maintained between desired parts of the model

(e.g. the piezoelectric material and circuit), especially as the model changes during the

topology optimization procedure. In the piezoelectric mechanical/electrical model, the

mechanical and electric field equations of the layered plate piezoelectric structure are

written as:

∇ ·T = ρü

∇ ·D = 0

(6.1)

where T is the stress tensor, ρ is the mass density, u is the displacement vector, and D

is the electrical displacement vector. The mechanical and electrical fields are coupled

through the piezoelectric constitutive law:

T = cE : S− e ·E

D = e : S + ǫS ·E
(6.2)

where cE is the stiffness tensor at constant electric field, S is the strain tensor, e is the

piezoelectric coupling tensor, ǫ is the dielectric tensor at constant strain, and E is the
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electric field vector. Following Kirchhoff plate theory where the out-of-plane normal

(3-direction), shear, and inter-layer stresses are neglected (T33 = 0, S32 = S31 = 0) and

by neglecting the in-plane electric fields (E1 = E2 = 0) the constitutive law can be

reduced. Similar to Marinkovic et al. [109], the constitutive equation for the ith layer

can be written in matrix form as:
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where (·)T is the transpose operator and the primed notation (·)′ indicates the coeffi-

cients are reduced, which are written as:
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33
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e
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”2

c
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. (6.4)

Using Kirchhoff kinematics, it is assumed that the strains through the total thickness

can be written as the sum of the midplane strains S′

0 and the product of the curvatures κ

with the distance from the midplane zc (i.e. S′ = S′

0+zcκ). A constant electric field and

a linear potential φ(i) through the thickness of each layer (i.e. E′(i) = E
(i)
3 = − d

dz
φ(i))

are also assumed. Applying Hamilton’s principle for the layered system of piezoelectric

equations results in:

∫

S

∑n
i=1

∫ h
(i)
+

h
(i)
−

(S′)T (Q(i)S′ − e′(i)E′(i)
)

+ uT ρ(i)u +
(

E′(i)
)T (

e(i)S′ − ǫ′(i)E′(i)
)

ds dS

=
∫

S
uT t̂−

(

φ(i)
)T
q̄(i)dS

(6.5)
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where the Neumann boundary conditions are:

t̂ = T · n̂

q̄(i) = −D(i) · n̂
(6.6)

and t̂ are surface tractions, n̂ is the unit surface normal, and q̄(i) is the charge per unit

area of the ith piezoelectric layer. The total charge q
(i)
piezo produced by the piezoelectric

layer material is then:

q
(i)
piezo =

∫

S

q̄(i)dS (6.7)

where the integration is over the in-plane surface area. See Marinkovic et al. [109] for

a similar treatment of the coupled piezoelectric equations.

In the electrode electrical conduction model only in-plane conduction is considered

on a per-layer basis. The field equations for each electrode layer are developed using

Maxwell’s equations under quasi-static assumptions:

∇ ·D(i) = ρ(i)
e (6.8)

∇×H(i) = J
(i)
f + Ḋ(i) (6.9)

with charge density ρe, magnetic field H, and free current density Jf . The constitutive

law (Ohm’s law) for electric conduction is:

J
(i)
f = σ(i)E(i)

e (6.10)

with conductivity σ(i). Assuming an irrotational electric field such that E
(i)
e = −∇φ(i),

integrating equation (6.9) over the volume of the electrode, and combining with equa-

tions (6.8) and (6.10), yields:

q̇
(i)
electrode =

∫

V

ρ̇(i)
e dV =

∫

V

∇ · σ(i)∇φ(i)dV (6.11)

where q
(i)
electrode is the total charge in the ith electrode.

The final sub-model, the electrical circuit, is assumed to be linear and can be

generalized as a RLC circuit with a series resistance R, capacitance C, and inductance
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L subject to a potential difference ∆φ. A methodology for the analysis of piezoelec-

tric systems connected to nonlinear circuits such as full-bridge rectifiers is described in

appendix A. The analysis of nonlinear circuits is complex and beyond the scope of the

work here, although many of the same principles discussed in this chapter are equally

applicable. The dynamics of a linear circuit are described by:

∆φ =
1

C
qcircuit +Rq̇circuit + Lq̈circuit (6.12)

where qcircuit is the electric charge.

The equations of the three sub-models are combined by common Dirichlet bound-

ary conditions and by the conservation of charge within the system:

qpiezo + qelectrode + qcircuit = 0 (6.13)

which depends on the connectivity of the sub-models and combines equations (6.7),

(6.11), and (6.12), integrated in time by assuming a time-harmonic response, to fully

couple the piezoelectric structure, the electrodes, and the electric circuit.

6.2.2 Finite element formulation

The finite element method is used to discretize the equations for the electrome-

chanics of the piezoelectric structure as well as the electrodynamics of the electrodes,

while for the circuit a lumped parameter model is used. A four-node layered finite el-

ement is used where the layers may consist of either pure structural, piezoelectric, or

electrode layers. The structural layers are built from four overlapping composite trian-

gular elements [71] composed of coupled 9-dof ANDES membrane [51] and 9-dof bending

[110] triangular elements, resulting in 24 structural degrees of freedom per element. The

piezoelectric layers use the same structural components coupled to the electric field via

piezoelectric coupling (see Marinkovic et al. [109]). In the formulation of the layered

element, the middle in-plane strains, curvatures, and electric field are assumed constant
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and integration through the thickness is performed in a piece-wise manner using constant

constitutive properties for each layer [71]. An arbitrary number of potential degrees of

freedom may exist per node through the thickness, allowing for multiple, independent

piezoelectric layers. Figure 6.2 illustrates an example layer configuration showing the

location of potential degrees of freedom on a layer basis and the linear interpolation of

potential through the thickness.

Under time harmonic assumptions (u = uee
iωt, φ = φee

iωt) with excitation fre-

quency ω, the resulting piezoelectric finite element system with structural damping can

be written as:

−ω2Meue + iωCeue + Keue +Θeφe = fe

ΘT
e ue +Cpφe = qe

(6.14)

where Me, Ce, Ke, Θe, Cp, ue, φe, fe, qe are the elemental mass, damping, stiffness,

piezoelectric coupling, and capacitance matrices, with the elemental nodal displacement,

potential, force, and charge vectors.

The electrode layers conduct electricity in the plane of the element between volt-

age degrees of freedom of the same electrode layer with finite conductivity as described

by equation (6.11). Each electrode layer is discretized with a four-node bi-linear finite

element (see Bathe [6]), which when combined under time harmonic assumptions yields:

iω

(

− 1

ω2
Ψe

)

φe = qe (6.15)

where Ψe is the elemental electrode conduction matrix for all the electrodes.

The time-harmonic form of the electric circuit equation (6.12) can be written as:

(

−ω2RM

e + iωRC

e + RK

e

)

φe = qe (6.16)

where:

RM
e = L

( 1
C
−ω2L)+(ωR)2

RI

RC
e = −R

( 1
C
−ω2L)+(ωR)2

RI

RK
e =

1
C

( 1
C
−ω2L)+(ωR)2

RI

(6.17)
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Figure 6.2: An example construction of a piezoelectric layered element composed of (S)
structural, (P) piezoelectric, (E) electrode, and (M) mass layers. An arbitrary number of
potential degrees of freedom φ, marked by blue circles, may exist through the thickness.

and RI connects the potential field degrees of freedom in the lumped parameter formu-

lation. Using equation (6.13) to connect equations (6.14), (6.15), and (6.16) yields the

final system of equations:

K̃







u

φ


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
=







K11 K12

K21 K22













u

φ






=







f
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(6.18)

where:

K11 = −ω2M + iωC + K

K12 = Θ

K21 = ΘT

K22 = −ω2RM + iω
(

− 1
ω2 Ψ + RC

)

+
(

RK + Cp

)

(6.19)

for which the matrices are assembled in the global sense with global system matrix K̃.

The mechanical response of the structure is described by K11, which changes with the

layout of materials both layer-wise and in the plane of the plate structure. The matrices

K12 and K21 are the piezoelectric coupling matrices, which couple the structural and

electrical responses and vary with piezoelectric material layout. The dynamics of the

electrical response in K22 are provided by the interaction of the circuit matrices RM,

RC, and RK with the piezoelectric capacitance matrix Cp, which varies with the ma-

terial layout, and the electrode matrix Ψ, which varies with the electrode conductivity
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and topology.

6.2.3 Material interpolation and associated issues

For the design of piezoelectric systems studied in this chapter, simple linear in-

terpolations are used to define the mass density, the stiffness coefficients, and the piezo-

electric coupling constant, and the electrode conductivity in each element / layer as

explicit functions of the optimization variables:

ρ(i) =
(

ρ(1) − ρ(0)

)

si + ρ(0)

Q
(i)
kl =

(

Qkl(1) −Qkl(0)

)

si +Qkl(0) 0 ≤ si ≤ 1

e
′(i)
31 =

(

e′31(1) − e′31(0)
)

si + e′31(0) i = 1 . . . (ns − 1)

(6.20)

where the subscripts (0) and (1) denote the lower and upper bounds for the variable

corresponding to design variable values of si = [0, 1]. An illustration of what the cor-

responding structure could look like is shown in Figure 6.3. It is possible with this

framework, but not explored in our examples, to additionally treat the electrode con-

ductivity as variable as a means to design the layout of electrodes on the piezoelectric

layers.

When the circuit resistance is also varied in the energy harvester examples a

nonlinear interpolation function is used as follows:

R = R(0) exp
(

ln
(

R(1)

R(0)

)

sj

)

j = ns
. (6.21)

This interpolation approach counteracts the large influence of the resistance on the

energy harvesting performance that dominates over the influence of the material pa-

rameters described above, and thus mitigates numerical problems when solving the

optimization problem.
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Figure 6.3: Illustration of the problem setup using topology optimization to determine

the layout of the piezoelectric layer and the circuit parameters.

Note that in the problem-specific formulation of the topology optimization prob-

lem for energy harvesting systems, the dielectric permittivity of the piezoelectric layer is

not varied with the other properties of the piezoelectric layer. This is done as a matter

of stabilization for the optimization algorithm to overcome scaling differences between

the inherent piezoelectric and electrical circuit problems that appear in the optimization

problem. In this study only a purely resistive external circuit is investigated, although

the piezoelectric material surrounded by electrodes acts as a capacitor thereby making

the whole system act like an RC circuit. In standard RC circuits, the maximum power

is dissipated for an oscillation frequency ω = 1/ (RC). However, finding the optimal

resistance in the case of piezoelectric harvesting is not as easy as satisfying the RC-

circuit condition, as demonstrated by Erturk and Inman [41] and Renno et al. [131].

The logarithmic scaling of voltages and currents in RC-like circuits due to changes in

capacitance through the dielectric constant is stark in contrast to the generally linear

scaling of the voltages and currents from changes in the piezoelectric coupling constant

and material layout. Because of this, the optimization process is dominated by the

circuit problem and the piezoelectric topology changes little, if at all. To overcome

this issue we keep the dielectric permittivity of the piezoelectric layer constant, which

makes the system capacitance constant, regardless of piezoelectric layout. While this is

a non-physical situation, it can be realized in practice by transferring any non-physical

capacitance to an external capacitor in parallel with the piezoelectric plate. As a result,
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in optimizing the piezoelectric layout, the capacitance value of this external capacitor

is also optimized at the same time, albeit indirectly. This procedure effectively isolates

the piezoelectric and electrical circuit problems from each other, thereby allowing the

piezoelectric material layout to change without changing the properties of the RC-like

circuit.

6.3 Verification

The numerical piezoelectric model is validated by analyzing two problems where

analytical solutions and/or experimental results are given in the literature. The first

problem is a cantilever beam harvester [40, 42, 44, 45] and the second problem a piezo-

electric circular plate [91, 92]. In both of these cases, fully covered cantilevers and

plates were considered as well as special cases where only part of the structure was cov-

ered by a piezoelectric patch and/or an electrode. In all cases excellent agreement was

obtained between simulation results and the analytical solutions and/or experimental

results reported in these papers. Two illustrative examples are shown here.

6.3.1 Material properties

The material properties used in the verification examples and the following ap-

plication examples are given in Table 6.1.
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Table 6.1: Material properties used for piezoelectric energy harvesting examples

Mass density Stiffness properties Piezoelectric properties

Piezoelectric ρ = 5700 kg/m3 cE11 = cE22 = 127 GPa e31 = −6.63N/C

(PZT-5H) cE12 = 80.2 GPa e33 = 23.2N/C

cE13 = cE23 = 84.7 GPa ǫS33 = 1.27e − 8 F/m

cE33 = 117GPa

Aluminum ρ = 2700 kg/m3 E = 73.0 GPa, ν = 0.33

Mass layer ρ = 5700 kg/m3 E = 0GPa

6.3.2 Cantilever beam

The first validation example follows the study of Erturk and Inman [44] who use

a vibrating bi-morph cantilever beam connected to a circuit for energy harvesting. In

[44] the authors develop an analytical model that compares favorably with experimental

data. Here the present finite element model is compared to their validated analytical

model for the same setup thereby validating our model as well. The setup for the

cantilever bi-morph consists of 0.14mm thick brass beam surrounded by 0.26mm PZT-

5A piezoelectric layers and two 0.006kg tip masses. The beam is 50.8mm long and

31.8mm wide. The material properties can be found in Erturk and Inman [44]. In

order to reproduce their results derived from beam theory with the plate formulation a

Poisson’s ratio of zero is used in the calculations.

The two piezoelectric layers are connected in series with each other and with an

external circuit consisting of a resistor of variable resistance as shown in Figure 6.4.

The finite element model consists of a 25 x 15 element mesh of the layered piezoelectric

plate elements described earlier. A structural layer is sandwiched between two piezo-

electric layers. At the bottom and top, electrode layers with a conductivity of 1.0e4

Ω−1 are placed; the conductivity is large enough to model nearly perfect conduction,
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but small enough to prevent numerical issues due to ill-conditioned system matrices.

The connections between electrodes are modeled with resistive elements, one with the

load resistance and the other with a negligible resistance to connect the two inner layers.

Lumped masses are included at the beam tip and mass proportional damping of 2.7%

is applied, as determined from Erturk and Inman’s experiments. Frequency sweeps are

performed for harmonic base excitation and the output power through the resistor is

calculated for resistivities of 1kΩ, 33kΩ, and 470kΩ. Figure 6.5 shows the power fre-

quency response functions (FRFs) plotting the output power normalized to the square

of acceleration, g2, over the excitation frequency. The results are in excellent agreement

with Erturk and Inman’s analytical solution. The largest output power is obtained

for 33kΩ, suggesting that there is an optimal resistance for the external circuit that

maximizes the output power.

Figure 6.4: Schematic of a cantilever bi-morph used for validation of our modeling

approach.

6.3.3 Clamped circular plate

In the second example a R2 = 25mm diameter circular plate that is clamped at

the outer edge is considered under static deformation. The plate consists of a 0.127mm

thick piezoelectric PZT-5H layer on a 0.508mm thick aluminum substrate. The material
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Figure 6.5: Power FRF for a piezoelectric bi-morph cantilever beam for resistances of
1kΩ, 33kΩ, and 470kΩ. Finite element calculations are shown as open symbols while
the analytical solutions are shown as solid lines.

properties are given in Table 6.1. An external static pressure is applied to one side of the

plate and the resulting open circuit voltage is calculated. This problem can be considered

a special case of the dynamic finite element model setup (6.18) such that ω → 0 and

R → ∞. In order to increase the voltage generated by the plate, the material in the

PZT-5H layer is arranged such that the piezoelectric polarization (polarity) changes

sign/direction (i.e. the coupling constant changes sign) at R1. Figure 6.6(a) shows

the problem setup. This problem was studied by Kim et al. [91, 92] who provided an

analytical solution and carried out supporting experiments. The finite element model

consists of a mesh of 18,000 elements, which was determined to be adequate by a mesh

refinement study. The results are in good agreement with the published experimental

data as shown in Table 6.2.



www.manaraa.com

128

Table 6.2: Generated VOC (in V) vs. R1/R2 for ∆P=9.65kPa

R1/R2 Experiment Analysis

0.40 5.31±0.014 5.61

5.61±0.014

0.72 8.84±0.039 9.29

9.26±0.010

To study the influence of the layout of the piezoelectric layer on the performance of

the structure, the radius R1 is varied and the open circuit voltage plotted as a function

of R1/R2 in Figure 6.6(b). The open circuit voltage is maximum for R1/R2 = 0.7.

Plotting the mean curvature (arithmetic mean of in-plane curvatures) as a function of

radius in Figure 6.6(c) shows that curvature changes sign at r/R2 = 0.7. To avoid

charge and voltage cancellation, the polarity of the piezoelectric material needs to be

switched at R1/R2 = 0.7. This finding is consistent with Erturk and Inman [40] and

Erturk et al. [45].

In addition to determining the optimum value of R1/R2 through a parameter

sweep, this example is used to test the topology optimization design methodology by

letting the optimizer find the optimum material distribution. The optimization problem

is defined to maximize the open circuit voltage by finding the optimal distribution of

two materials that differ only in the sign of their piezoelectric coupling coefficients. The

design variables interpolate the piezoelectric coupling constant linearly from a positive

value to a negative value (i.e. it is either poled upward or downward). While for this

axisymmetric problem it would be sufficient to consider only the variation of polarization

as a function of radius, in the setup of this optimization problem the design variables

define the polarity in the piezoelectric layer independently in each element. Figure

6.6(d) shows this optimal distribution which has a corresponding optimal open circuit
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voltage of 9.31V at about R1/R2 = 0.71 (an estimate because of the finite element

discretization), which correlates well with the analytical optimal solution provided by

Kim et al. [91].

In this example, the layout of the piezoelectric layer has a negligible effect on

structural response due to static pressure loading. The regions with positive and nega-

tive curvature can be determined and, neglecting small piezoelectric effects, the layout

of the piezoelectric layer can be aligned with the curvature distribution. It is shown

in the following section that this procedure is not necessarily applicable to problems

where the structural response depends on the layout of piezoelectric material. In this

case this optimization approach provides a useful tool to find the optimum distribution

of piezoelectric material.
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Figure 6.6: (a) Problem setup of a circular plate with a pressure load, (b) open circuit

voltage as a function of polarization reversal radius, (c) mean curvature of the plate

as a function of radius, (d) optimal piezoelectric polarization layout using topology

optimization (red – positive polarization, blue – negative polarization).

6.4 Applications

6.4.1 Objective function and sensitivities

Piezoelectric energy harvesters

The formulation of the piezoelectric energy harvesting optimization problem is

quite general and as such can be used to solve a wide range of design problems regarding

piezoelectric energy harvesters. In the examples that follow a more restrictive suite of

problems are solved that involve determining the layout of piezoelectric patches on an

elastic substrate to maximize the harvested power for a given operating frequency (see
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Figure 6.3). In addition, the optimal resistance of the harvesting circuit is determined.

To this end the objective function is formulated as:

z =
|∆φ|2
2R

(6.22)

which is a measure of the average power dissipated by the resistor. The gradients of the

objective can be written as:

dz (si)

dsi
=
∂z

∂R

dR

dsi
+
∂z

∂φ

dφ

dsi
= −|∆φ|

2

2R2

dR

dsi
+

1

R
ℜ
(

φ∗K̃−1∂K̃

∂si
φ

)

(6.23)

which are evaluated by the adjoint method. In the examples studied in the following no

inequality or equality constraints are considered and no gradient filtering or penalization

techniques are used. The optimization problems are solved with a sequential quadratic

programming algorithm [135].

Piezoelectric waveguides and band-gap structure

The formulation of the objective function for the waveguide and band-gap struc-

ture problems is the same as that provided in previous chapters, namely complex norm

objective function 4.27. The globally convergent method of moving asymptotes [151] is

used as the optimization algorithm.

6.4.2 Piezoelectric energy harvester examples

In this subsection four examples are presented that demonstrate the capabilities

of the presented approach. The focus is on a suite of examples that cannot yield so-

lutions through analytical beam or plate analysis methods. It is shown how adding a

piezoelectric energy harvesting layer can drastically change the response of a system

and that simply placing material in regions of positive or negative curvature will not

necessarily yield a design that effectively harvests energy. Optimal designs that over-

come this problem using this methodology are presented and discussed. It is then shown

how the parameters of the harvesting circuit, namely the resistance, affect the power
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output of the energy harvesting system. This is followed by a study of how adding a

mass layer to the structure changes the response and the optimal design of the plate

structure and how it can improve results more than optimizing the piezoelectric layer

alone. The final example demonstrates that the technique is applicable to a curved

base structure and illustrates the versatility of our approach as not only a design tool

but also as a tool for investigating physical trends associated with optimally designed

structures. The intent is to show how the approach can be used to explore the general

behavior and develop overarching principles through the study of a suite of particular

problems in piezoelectric energy harvesting.

Clamped square plate – thickness effects

Here the design of a 10x10cm clamped square plate as shown in Figure 6.7 is

considered. The plate is clamped at the middle two-fifths of one side and is subject

to a harmonic excitation of 575Hz at the clamped location normal to the plane of

the plate, actuated as a unit displacement. The objective of the example is to de-

termine the optimal layout of piezoelectric material on top of a substrate such that

the power dissipated by a constant 1.0kΩ resistor is maximized. The initial design

for the optimization problem is a plate fully covered with piezoelectric material. This

optimization problem is solved for six different thickness ratios of piezoelectric to sub-

strate materials. The piezoelectric is transversely isotropic PZT-5H with thicknesses of

hp = [0.001, 0.025, 0.1, 0.2, 0.3, 0.5]mm, while the substrate is aluminum with a constant

thickness of hs = 1mm. The finite element model is discretized into a 25x25 element

mesh. It was found that for undamped structures, the sudden phase change in voltage

and displacement at resonance creates a non-smooth optimization landscape that cannot

be traversed efficiently by gradient-based algorithms. In order to alleviate this problem,

as well as make it more practical, mass proportional damping of 1% is included.
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Figure 6.7: Design problem setup of a square plate subject to harmonic loading.

The resulting optimal material layouts are shown in Figure 6.8. As the thickness

ratio increases the optimal design gradually changes. The designs optimized for the

largest and smallest thickness ratios differ significantly. For a thin piezoelectric layer

the material layout in the piezoelectric layer closely matches the signs of the strain

distribution computed for a plate without piezoelectric layer (see Figure 6.8). With

increasing thickness the material layout differs increasingly from this strain distribution

as the piezoelectric layer adds stiffness and mass thereby changing the dynamic response

of the structure. While the uniqueness of these designs cannot be guaranteed under our

methodology, these problems were tested for local optima by solving them with a number

of random initial designs, all of which converged to the same solution. These results

suggest, but do not prove, that the optimization problem is globally convex.

The relationship between thickness ratio and optimal design is studied further

by taking each piezoelectric pattern of Figure 6.8 (designs A-F), varying the piezoelec-

tric thickness from hp/hs = 0.001 to 0.5, and computing the power generated in each

case. These results are shown in Figure 6.9 where the output power for each design

is normalized to the output power of the optimal design for that thickness ratio. For

each thickness ratio the maximum power is produced by the design optimized for that

thickness. This situation is not as intuitive as it might seem as evidenced by the non-

monotonic behavior when moving away from the diagonal (which represents the family of

optimal designs) in Figure 6.9, e.g., design D at hp/hs = 0.5 or design F at hp/hs = 0.2.

The results also suggest an increasing sensitivity to design changes as thickness ratio



www.manaraa.com

134

increases, for example in the noticeable drop in power output between designs F and E

at hp/hs = 0.5. Although the two designs have somewhat similar features, the power

output is significantly different because of the change in structural response caused by

the additional thickness of the piezoelectric layer.

Figure 6.8: Comparison of the strain pattern for a plate without piezoelectric a layer
with optimal distribution of piezoelectric material (red) on an aluminum substrate (blue)
for six different ratios of piezoelectric to substrate thickness.

Figure 6.10 shows Frequency Response Functions (FRFs) of the output power

encompassing the second through fourth modes for the fully covered and optimal plate

designs for each of the thickness ratios. The FRFs for the fully covered plates show

the general trend that an increase in thickness results in an increase in output power

as well as a change in the response where the third mode shifts to lower frequencies.

The driving frequency for this problem is consistently located between the second and

third bending modes for these cases. For the optimal designs, the degree to which the

FRF changes increases with thickness ratio. As the piezoelectric layer constitutes a

larger fraction of the total structural makeup, the more its variation affects the overall

structural response. For lower thickness ratios with less ability to change the structural

response, the increase in output power is not caused by changes in the location of the

natural frequencies, but the relative influence of the modes at the driving frequency.
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Figure 6.9: Power output for each design at each thickness ratio. The power magnitude
of each thickness ratio is normalized to the power of the optimal design at that thickness
ratio.

This is best seen for hp/hs = 0.001 and 0.025. As the thickness ratio increases, however,

more freedom is allowed in the design to shift modes to different frequencies, specifically

to move a mode toward the driving frequency such that the driving frequency becomes a

resonant frequency. This is indicated in Figure 6.10 by the gradual shifting of the third

mode to the driving frequency with increased thickness ratio, whereas more freedom

to move the modes allows for the third mode to get closer to the driving frequency.

As such, designs E and F of Figure 6.8 are structures with natural frequencies at the

driving frequency of 575Hz and are akin to tuned cantilever beam harvesters typically

used in energy harvesting applications, but without the need to change the shape or

add an end mass.
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Figure 6.10: Power FRFs of both the fully covered (dots) and optimized designs (solid)

for each of the thickness ratios. The vertical dashed line is the frequency at which the

designs are optimized; it is located between the second and third modes for all of the

fully covered plates.

In summary, these results show a strong influence of thickness ratio on the opti-

mal layout of piezoelectric material on the plate. At larger thickness ratios the addi-

tion/removal of piezoelectric material significantly changes the mass and stiffness prop-

erties of the structure. The resulting material redistribution changes the structural

modes in such a way that the structure simultaneously becomes “tuned” to the driving

frequency and prevents charge cancellation, but only if the piezoelectric material con-

stitutes a significant proportion of the structure. Not only do these results demonstrate

the need to treat the coupled piezoelectric layer as an integral part of the system and its

structural response when considering the design of piezoelectric energy harvesters, they

also demonstrate the manner in which topology optimization can overcome the limita-

tions of other existing design methods to improve the power output of such devices.

Simultaneous piezoharvester and circuit design

Here the same edge-clamped square plate as in the previous example is consid-
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ered with the exception that the external circuit resistance is treated as a design variable

along with the piezoelectric properties of the structure. In the previous example the

electrical characteristics of the circuit were kept constant including the electrical capac-

itance of the system. As explained earlier, this is because the dielectric permittivity

of the piezoelectric is not varied with its other properties, allowing for separation of

the structural/material layout and electrical parts of the optimization problem. In this

problem, the plate again is optimized for the six different thickness ratios with the same

harmonic excitation of 575Hz. The optimization problem is started from an initial de-

sign with a fully covered piezoelectric layer. The material layout is kept variable along

with the resistor to allow for simultaneous structure and circuit design.

The material distributions convergence to same layouts as obtained previously

for a fixed resistivity of 1.0kΩ and shown in Figure 6.8. Figure 6.11 shows the power

output of the final optimized material layouts as a function of circuit load resistance

as well as the individual optimized values for those designs at R = 1.0kΩ and the

optimal resistances. This figure reveals the RC circuit-like behavior of power output as

a function of resistance and shows that the final harvesting circuit resistance obtained

via optimization coincides with the maxima of those curves. These data are also listed

in Table 6.3, which provides a comparison of power output for all the designs including

plates fully covered with piezoelectric. The data show that, while for small thickness

ratios the optimal piezoelectric layout contributes little to improving the power output,

as the thickness ratio increases the layout becomes increasingly important. This is

particularly evident in the hp/hs = 0.5 design where the power output is improved by

over 75 times. Also noted are that the optimal resistances between the fully covered

and optimal designs are different even though the system capacitance is the same. This

indicates, along with the calculated data shown in Table 6.4, that the optimal resistance

obtained by applying the optimal circuit condition for an RC circuit does not correspond

well with the results from our optimization. This finding is in agreement with those
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of Erturk and Inman [41] and shows that obtaining the optimal parameters for the

harvesting circuit is equally important as finding the proper structural design to provide

that power, and that this approach yields both.

Figure 6.11: Power output as a function of resistance for all six thickness ratios including

the optimal solutions obtained with R= 1kΩ (open circles) and with the resistance as

an optimization variable as well (closed circles).
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Fully covered

with variable R

(Watts/g2)

Fully covered

optimal

resistance (Ω)

Optimized design

with R = 1.0kΩ

(Watts/g2)

Optimized design

with variable R

(Watts/g2)

Optimized design

optimal

resistance R (Ω)

0.001 9.83e-11 3.08e-8 1.59 1.13e-10 3.54e-8 1.60

0.025 5.29e-8 7.34e-7 35.9 5.60e-8 7.62e-7 36.6

0.1 5.37e-7 2.36e-6 114 6.49e-7 2.65e-6 121

0.2 1.25e-6 3.25e-6 198 3.55e-6 8.09e-6 223

0.3 1.78e-6 3.39e-6 282 4.95e-5 7.02e-5 309

0.5 2.51e-6 3.28e-6 465 2.39e-4 2.52e-4 591



www.manaraa.com

140

Table 6.4: Calculated and optimal circuit resistances

hp/hs Calculated

piezoelectric

capacitance (F)

Calculated

optimal

resistance

R = 1/ωC (Ω)

Fully covered

optimal

resistance (Ω)

Optimized

design optimal

resistance R (Ω)

0.001 1.27e-4 2.18 1.59 1.60

0.025 5.08e-6 54.5 35.9 36.6

0.1 1.27e-6 218 114 121

0.2 6.35e-7 435 198 223

0.3 4.23e-7 654 282 309

0.5 2.54e-7 1090 465 591

Optimization with a mass load

In applications of piezoelectric cantilever beam harvesters, it is commonplace to

tune the first resonant frequency of the beam to the primary ambient frequency to which

it is exposed, thereby maximizing the transferable energy. This can be accomplished

by altering the length or width of the beam or adjusting material parameters, but in

practice this is often most easily achieved by adding a mass to the tip of the beam, which

is particularly useful for manufactured beams with material properties and dimensions

that are unalterable. Here it is illustrated how topology optimization can be used not

only to determine the layout of the piezoelectric material, but also to determine how to

spatially distribute a layer of non-stiffening mass to maximize the power output. The

problem setup is the same as that for the first example with R = 1.0kΩ, a thickness

ratio hp/hs = 0.1, and an excitation frequency of 575Hz, but with an extra mass layer

of thickness 0.1mm on top as shown in Figure 6.12. The density of the mass layer is

the same as that of the piezoelectric. There is no constraint on placement of the mass
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layer so it is possible that extra mass can be placed where there is no piezoelectric to

support it, although this has little effect on the system response. These results can be

used to determine the placement of an array of lumped masses or of a high density/low

stiffness layer to improve harvester performance. The formulation could also be easily

modified to allow for placing larger mass lumps in specific locations, similar to what is

done in practice, but this option is not studied here.

The optimal material layouts of both the piezoelectric and mass layer are shown

in Figure 6.12. Interestingly, the optimal layout of the piezoelectric material bears no

resemblance to the optimal designs without the mass layer (specifically design C in

Figure 6.8). The power FRFs of this and design C of Figure 6.8 are shown in Figure

6.13. In both cases, for the optimum designs, the third mode is shifted toward the

driving frequency. As was shown before, the optimal layout of the piezoelectric layer

alone is not sufficient to move the third mode all the way to the driving frequency at

this thickness ratio, but the addition of the mass layer provides enough design freedom

to achieve this in the optimal design. Indeed the added mass layer actually gives more

freedom than the optimal structure with this same thickness ratio (i.e. hp/hs = 0.2,

Figure 6.8, design C) and mass. The power output for this design at R = 1.0kΩ is

P = 6.34e − 5W/g2, which is greater than the output for a piezoelectric layer twice as

thick as shown in Table 6.3. This indicates that, for this example at least, optimizing an

added mass layer in addition to the piezoelectric layer is more effective than increasing

the thickness of a single piezoelectric layer and optimizing. One of the primary reasons

for this is that the piezoelectric layer and mass layer can vary independently, which

is not possible for the thicker piezoelectric layer and that the mass layer increases the

inertia without adding stiffness. However, if stiffness were included with the mass layer,

these results would likely be significantly different.
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Figure 6.12: Through-thickness setup for a problem with a mass layer is the same as

the flat plate problem but with a to-be-optimized layer of non-stiffening mass on the

top. Optimal distribution of material in the (a) piezoelectric layer (red) and (b) mass

layer (green).

Figure 6.13: Power FRFs for fully covered and optimized designs with and without the

added mass layer. The optimal design without the mass layer is design C of the previous

examples.

Clamped curved plate

To further illustrate the versatility of the presented methodology, a series of struc-

tures with increasingly curved shapes are used as a substrate upon which a piezoelectric

layer is deposited for energy harvesting. Curved devices may be required to accommo-

date design or configuration constraints. Alternatively, shape imperfections that occur
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during fabrication or service may lead to curved shapes.

The base structure for this example is the same as the previous problems with

a piezoelectric layer to substrate thickness ratio of hp/hs = 0.1, but the curvature

of the base structure is varied as κL/π = [0, 0.02, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0] while

the surface area is constant. The structure is clamped and vibrated as before and as

shown in Figure 6.14. The optimal distribution of piezoelectric material located on

the top of the plate (the inside of the curve) is sought that maximizes the harvested

power through a 1.0kΩ resistor for an excitation frequency of 575Hz, which is somewhere

between the second and third bending modes for all curved structures. Figure 6.14 shows

the optimized designs for a flat substrate and for two cases of curved substrates. The

projections of the curved material layouts onto a flat plate for all curvatures considered

are shown in Figure 6.15.

Figure 6.15 shows that the design changes with increasing base curvature. Some

interesting trends are noted, such as the stark change in design with only a slight

curvature added to the plate, which is due to the additional geometric stiffness and

changes in mode shapes. The significant change in design as a function of base curvature

implies that the optimal flat plate design is not efficient for energy harvesting on a

slightly curved substrate and vice-versa. This is verified by the bar plot in Figure

6.16, which shows the power output for a given piezoelectric material layout for each

structural curvature normalized by the power output of the optimal design for that

base curvature, similar to that in Figure 6.9. The bar plot is diagonally dominant,

meaning that each optimal design works best for the base curvature it is designed for,

and reveals that the slightly curved design B will produce relatively little power on

any base structure it was not designed for and vice versa. In contrast, curvatures at

and above κL/π = 0.1, which all have similar optimal material layouts as shown in

Figure 6.15, produce similar amounts of power. As was the case of the flat plate in

the first example, these results are related to the locations of the natural frequencies of
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the structures relative to the excitation frequency. Figure 6.17 shows the relationship

between the natural frequencies of the fully covered and optimal designs as a function

of curvature. For the smaller base curvatures, large changes in natural frequency occur

as a function of base curvature, while at the same time modes three and four nearly

coincide. For larger base curvatures, however, the changes in natural frequency are less

pronounced and the modes distinct. This correlates well with our earlier observation

that differences in natural frequency and mode shape relative to the excitation frequency

are significant drivers in the optimization process.

These results have general implications for manufacturing or handling of such

structures due to the sensitivity of designs to small shape imperfections. For example,

accidental bending or manufacturing flaws may have significant consequences in the

performance of the piezoelectric harvesting system with small base curvature, but those

with high base curvature would be more robust to such imperfections.

(a) (b) (c) (d)

Figure 6.14: (a) Problem setup and final material layouts of piezoelectric material

(hp/hs = 0.1) on a curved substrate for a few different curvatures: (b) κL/π = 0,

(b) κL/π = 0.4, (b) κL/π = 1.0 (red – presence of piezoelectric material, blue – absence

of piezoelectric material).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.15: Optimal material layouts for curvatures ranging from a flat plate

(κL/π=0) to a half cylinder (κL/π=1). (a)-(i) Final material layouts for curvatures

κL/π=[0,0.02,0.04,0.1,0.2,0.4,0.6,0.8,1.0] (red – presence of piezoelectric material, blue

– its absence).



www.manaraa.com

146

Figure 6.16: Power output for a given material layout and curvature normalized to the

power outputs for the optimal design of the curvature.

Figure 6.17: Natural frequencies of bending eigenmodes for structures fully covered

with piezoelectric (solid with diamonds) and those of optimized designs (dash-dot with

squares). The driving frequency (dashed line - 575Hz) is consistently between modes for

all curvature values (solid bold line) with each mode a different color for comparison.

6.4.3 Piezoelectric waveguide and band-gap structure examples

Presented here are topology optimization problems and solutions for piezoelectric

acoustic waveguides and a band-gap structure whose properties can be switched on and
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off. The propagation of in-plane acoustic waves is considered, which travel through a

3-1 oriented piezoelectric slab covered by two electrodes on top and bottom as depicted

in Fig. 1 for a bending waveguide setup. In this structure, the wave is traveling only

through piezoelectric material, albeit with local differences in poling (either positive

or negative). This situation disables the traditional means for waveguiding as there is

effectively only a single elastic material and no material interfaces with which to interact,

hence no reflection, transmission, or Bragg grating effects can occur. In fact, in a closed

circuit situation where the top and bottom electrodes are connected, the piezoelectric

effect is completely nullified and the structure will appear as an homogeneous medium

to an acoustic incoming wave. In an open circuit situation, however, the wave will

produce a voltage across the electrodes as the piezoelectric acts in a sensing mode.

The electrodes, which cover the whole structure, will in turn simultaneously create an

electric field everywhere else in the structure, thereby producing new acoustic waves in

an actuation mode. Thus, the waveguiding and band-gap properties of these structures

can be turned on and off by changing from open to closed circuit operation.

In these problems the piezoelectric material (PZT-5H) is modeled by the shell ele-

ment described in section 6.2.2. The elements have a thickness of 1m (arbitrary; used for

illustration purposes) and rotational and out-of-plate degrees of freedom are prescribed

as zero, which approximates the plane stress condition. Electrodes surround the piezo-

electric on the top and bottom out-of-plane surfaces in the shell element formulation

with the bottom electrode grounded. The top surface of the piezoelectric thus has a con-

stant voltage across the whole domain and all piezoelectric elements are hence directly

coupled to each other, a much stronger coupling than the non-piezoelectric case. Design

variables are tied to the piezoelectric coupling constant only, which varies linearly from

a negative to a positive value, which corresponds to reversing the polarization. The goal

is thus to determine the optimal layout of piezoelectric poling to maximize the objective.

A penalization scheme was introduced after 200 iterations to help the design variables
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converge to a “0-1” solution, although the designs were already close to converged and

the objective did not change much.

Figure 6.18: Schematic of a piezoelectric bending waveguide.

Piezoelectric bending waveguide

A bending waveguide composed of piezoelectric material is considered. The 1

cm x1 cm domain is meshed into a 100x100 grid surrounded by viscous damping non-

reflecting boundary conditions. The input wave is excited at 2.0MHz at a 2 mm port in

the middle of the left side of the domain. The objective function is formulated to max-

imize the vertical and minimize the horizontal displacement norms at the exit location,

a 2 mm port in the middle of the bottom surface. The optimization is performed in an

open circuit state.

The results of this example are shown in Figure 6.19. Similar to the non-

piezoelectric bending waveguide, the complex norm wavefields of the homogeneous and

final designs show that the wave enters the domain and exits as expected. The manner

in which this occurs, however, is quite different as evidenced by the real part of the com-

plex wavefields in the x- and y-directions. In the non-piezoelectric case the x-directional

wavefields are very different from that in the homogeneous material whereas indicating

that the wave energy is being guided toward the exit port. The same wavefield for
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the piezoelectric case on the other hand is perturbed relatively little by the final dis-

tribution of piezoelectric material, although the field in the y-direction is significantly

changed. This indicates that the device is working simultaneously as a sensor and ac-

tuator, whereby the incoming wave is “sensed” and its energy converted into an electric

field that covers the whole domain, which is then used to directly actuate a separate

wave in the y-direction. In fact, it is not possible to bend the wave by mechanical

means using this setup because there is no impedance mismatch between the positively

and negatively polarizations of the piezoelectric material. The efficiency of this device

is calculated at 30%, based on the integrating the Poynting vector over the input and

output ports. The low efficiency can be rationalized by the fact that the entire domain is

covered in electrode and so any actuation occurs everywhere at once, even at the edges

of the design domain where half of the actuated wave energy will enter the domain and

the other half will immediately exit through the viscous damping boundary conditions.

It is expected that the efficiency would increase and other functions could be created

if a third, non-piezoelectric material with a different acoustic impedance were used for

design in addition to finding the piezoelectric poling distribution. The significant aspect

of this current design, however, is that the bending properties can be completely turned

on and off.
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(a)

(b) (c) (d)

Figure 6.19: (a) Final layout of positive (blue) and negative (red) polarized piezoelectric.

Wavefields in (top) a homogeneous material and (bottom) the final design for the (b)

complex norm, (c) real x-direction, and (d) real y-direction.

Piezoelectric wave sensor and actuator

Here, two devices with complementary functions are designed: a device that con-

verts elastic wave energy into electric field energy and another that does the opposite.

In creating these devices, two separate domains are considered with the same prop-

erties as in the previous piezoelectric bending waveguide problem. The electrodes of

each domain are connected with a wire so that they are electrically coupled, but not

mechanically coupled. In the first domain an elastic wave enters the domain on the left
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side while the objective function for the problem is formulated to maximize the complex

norm displacements in the middle of the bottom side in the second domain in the same

manner as the piezoelectric bending waveguide. As such, this setup essentially mimics

the bending waveguide but through separation of the sensing and actuation functions.

The final layouts of piezoelectric poling in the two domains are shown in Figure 6.20 as

well as the complex norm displacement fields and pointing vector magnitudes. As the

wave enters the first domain, the wave harmonically strains the piezoelectric creating

an electric field whose energy is split between the first and second domains through the

connection of their electrodes. This harmonic electric field then causes a strain in the

second domain such that the resulting wave energy is focused toward the bottom of the

domain. The plots of Poynting vector magnitude show a clear picture of sensing and

actuation functions for these two devices.

The efficiency of this combination of sensor and actuator is 29% in transferring

energy from the input port of the sensor to the exit port of the actuator. These designs

also suffer from the setbacks described for the piezoelectric bending waveguide, and

more so when combined due to the increased edges where wave energy can escape. As

was the case previously, creating a closed circuit in the sensor design would cause the

wave to pass through the sensor unimpeded, while no energy would be transferred to the

actuator. The primary advantage of these designs is that they can be used separately

whereas the sensor can be used as an energy harvester whose gathered energy could be

used to power other devices, and the actuator could be powered by some other external

source.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.20: Final layout of piezoelectric polarization for the wave (a) sensor and (b)

actuator with corresponding (c-d) displacement norm and (e-f) Poynting vector magni-

tude.

Piezoelectric Bragg grating

While a classical Bragg grating consists of alternating layers of two materials with

different acoustic impedances, in the following design of a piezoelectric Bragg grating

no impedance mismatch exists and therefore it is not clear how such a device should be

designed. The goal of the problem is to find the distribution of piezoelectric poling that
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creates the same effect as a Bragg grating. To facilitate this, a 5cm x 1cm rectangular

domain is considered, similar to the Bragg grating verification problem in section 5.3.

The computational domain is surrounded by periodic boundary conditions on top and

bottom and viscous damping boundary conditions on the left and right. The domain is

discretized into a mesh of 250 x 50 elements. A harmonic load at 500 MHz on the left

side introduces a pressure wave into the domain. The objective function is to minimize

the magnitude of the complex displacement norms on the right side of the domain.

The final distribution of piezoelectric poling is shown in Figure 6.21 along with

the complex displacement norm field in both open circuit and closed circuit operation.

Clearly the open circuit state blocks the wave while the closed circuit state lets the wave

pass through uninhibited. This is verified in Figure 6.22, which shows the transmission

of the wave as a function of frequency for both cases. While the final solution looks

and acts like a classical Bragg grating, it is not actually a Bragg grating because Bragg

reflections do not exist in the problem for lack of any impedance mismatch. Rather,

the simultaneous sensing and actuation produces destructive interference of the wave.

Regardless, the primary advantage of this design is that by merely changing from an

open to closed circuit configuration the filtering properties of this structure can be

completely turned off.
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(a)

(b)

(c)

Figure 6.21: (a) Final layout of piezoelectric polarization (red – positive polarization,

blue – negative polarization). Complex displacement norm field of the pressure wave

propagating through the final structure in (b) open circuit and (c) closed circuit config-

urations.
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Figure 6.22: Wave transmission through the piezoelectric Bragg grating as a function

of frequency for open circuit (solid) and closed circuit (dashed) configurations.
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6.5 Summary

In this chapter a general methodology for the analysis and design of piezoelectric

structures made from layered piezoelectric plates and their associated electrical circuits

using topology optimization is presented. Using this approach it is possible to deter-

mine the material layout of structural, piezoelectric, and electrode components, along

with circuit parameters to maximize the energy harvesting performance of piezoelectric

harvesting systems and to synthesize piezoelectric waveguides and band-gap structures.

The energy harvester example problems demonstrate the advantages, and in many cases

the necessity, of such a design approach due to either the lack of an analytical theory

to fully describe the structure or the large changes in response that the introduction

of a piezoelectric layer may produce. In particular, it is found that a design method-

ology solely based on finding regions of positive and negative strain is inadequate for

design purposes when the piezoelectric significantly changes the structural response. It

is also found that it is possible for the sensitivity of a harvester’s performance to shape

imperfections to change significantly as a function curvature, an important result when

considering design robustness. These results demonstrate that this methodology can

be easily used to yield detailed designs for particular problems with application-specific

objectives and constraints. For piezoelectric waveguide and band-gap structures, an

important capability was demonstrated, namely the ability to design structures whose

properties can be completely turned on or off depending on a simple open or closed cir-

cuit configuration. This is an ability for which there is currently no alternative method

of design, making topology optimization with piezoelectric materials a particularly im-

portant tool for these novel problems.
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Conclusions and Future Work

7.1 Conclusions

The goal of the research presented in this dissertation was to develop and expand

design methodologies using topology optimization for the generation of heterogeneous

materials and structures subject to wave propagation, vibration, and piezoelectric phe-

nomena. The phenomena at play in these systems include the various modes of wave

propagation, how these modes interact with material interfaces and periodic arrays of

material interfaces, the conversion of one mode into another, the electromechanical cou-

pling of piezoelectric materials and how that affects wave propagation and vibrations,

and the charge cancellation effects of electrodes piezoelectric structures. The effects

of these phenomena and how they influenced the topology optimization design process

were demonstrated in a number of examples and studies. In each of chapters 4, 5, and

6, key results were discussed. These are summarized here.

In chapter 4, topology optimization of elastic waveguides was investigated. It

was found that the material layouts resulted in Bragg grating like structures, whether

curved for the bending waveguide or shaped like a series of parabolic mirrors for the

surface wave focuser. Investigations of the bending waveguide for high density meshes,

however, revealed small, distinct features much smaller than the wavelength in the ma-

terial, indicating that a phenomenon in addition to Bragg reflections was influencing the

design. It was suggested that these features created a localized area of effective material
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anisotropy as seen by the wave. In essence the optimizer is creating anisotropy in the

design to improve the objective, although the individual materials used are isotropic.

It was also shown, however, that the removal of these small features had little impact

on the overall efficiency of the designs. Mode conversions were also a prominent phe-

nomenon in these designs, in particular in the pressure to shear wave mode converter

problem. An issue of symmetric optimization landscapes was also illustrated, reveal-

ing the definite possibility of local optima even though most waveguide problems have

shown little dependence on initial design.

The work of chapter 5 illustrated the similarities and differences between two

methodologies for the design of band-gap materials, namely band-gap structures and

band-gap materials. The examples showed the significant effects that non-bulk propa-

gating modes had on the material layout of the final designs using either methodology.

Each methodology was also found to have its own drawbacks. Design of band-gap struc-

tures using time-harmonic analysis lacked the ability to isolate specific modes and as a

result mode conversions would occur during analysis that would not be present in a true

band-gap material. The Bloch-Floquet analysis and design methodology for band-gap

materials, on the other hand, suffered from an inability to solve surface wave problems.

It was also shown that the optimization landscape was full of local optima, where three

different solutions were shown for three different initial designs. The redeeming quality

of this methodology, however, is in the ability to directly manipulate the dispersion

relation for the material. This was particularly illustrated with an example of a mode

filtering material.

In the final chapter of methodologies and examples, chapter 6, piezoelectric struc-

tures were considered. The bulk of this chapter focused on the development of a new

methodology for the design of piezoelectric energy harvesting structures. Through the

examples it was shown that topology optimization is a necessary tool to find the opti-

mal layout of piezoelectric material on the energy harvester because of the non-trivial
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nature of the problem. This was evidenced by the balancing act that must be played

between changing a structural mode and preventing charge cancellation. It was shown

that optimization of the harvesting circuit is also of vital importance and that topology

optimization of such structures can be a useful tool for design robustness. In addition to

energy harvesters, piezoelectric materials in waveguides and band-gap structures were

also investigated. This yielded new, novel designs using spatially distributed piezoelec-

tric polarization for these types of devices with the ability to turn their waveguiding

and band-gap properties on or off by merely changing from an open to a closed circuit

configuration.

7.2 Future Work

The following projects constitute a set of largely unsolved problems in the areas

of wave propagation, phononic materials, and vibrating piezoelectric energy harvesting

systems. Outlined are descriptions of future work using topology optimization and the

techniques discussed in this dissertation that may provide solutions to these problems.

This work focuses on two problems: acoustic and elastic cloaking, including the cloaking

structure and specialized meta-materials that may be used in such a structure, and the

design of piezoelectric energy harvesting systems with nonlinear circuits.

7.2.1 Acoustic and elastic cloaking

The work described in this section focuses on the so-called cloaking problem. The

cloaking problem, in which an object of finite size is hidden from external detection,

has gained substantial attention over the past few years, especially in electromagnetics.

Pendry et al. [126] has provided an analytical solution to the electromagnetic cloaking

problem in three dimensions that uses a coordinate transformation of a sphere resulting

in a spherical annulus constructed of exotic materials with negative permittivity and

permeability. Milton et al. [114] subsequently analyzed how the form of the electromag-
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netic and elastodynamic equations change under such coordinate transformations, and

showed that they are invariant under such transformations. Cummer and Schurig [32]

use a transformation of Maxwell’s equations in applying Pendry’s solution to acoustics

which resulted in similar results that also use exotic properties including anisotropic

density and bulk modulus materials, but is only applicable in two dimensions. Cai and

Sanchez-Dehesa [18] have since analyzed Cummer and Schurig’s two-dimensional solu-

tion and found that their acoustic cloak is less that perfect under more flexible situations

such as when the cloaked region is not rigid. Recently, analytical solutions for acoustic

waves in three dimensions have been provided independently by Chen and Chan [23]

and Cummer et al. [31]. Chen and Chan apply Pendry’s solution to a mapping and

equivalence of the acoustic equation to the DC conductivity equation, while Cummer et

al. arrived at the same solution through acoustic scattering theory, which is coinciden-

tally used by Chen and Chan to verify their own solution. It should be noted, however,

that these acoustic and the 2D electromagnetic (specifically not including the 3D elec-

tromagnetic case) solutions to the cloaking problem have singularities at the interior

edge of the cloak, thereby introducing an inherent infeasibility in their solutions. In

addition to this singularity, which can be mitigated by allowing for a less than perfect

cloak, the cloaking formulations using Pendry’s coordinate transformation solution are

extremely sensitive to parameter changes, in particular the inner radius of the cloak

as shown by Ruan et al. [134], primarily due to this singularity. Also, as noted by

Chen et al. [24], the same types of solutions are valid only for a single frequency and

scattering will dramatically increase away from that frequency. Chen et al. [24] rectify

this problem in two-dimensional electromagnetic cloaks by mapping an annulus with a

small scattering cross section to a larger annulus, rather than mapping a circle to an

annulus. They showed that, as a result, the bandwidth of the cloak can be expanded,

but at the expense of the scattering cross section and subsequent cloaking ability.

Aside from the issues of the cloaking structure, the major drawback of these solu-
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tions is that they require the use of materials with properties such as anisotropic mass

and stiffness, which are not found naturally in bulk materials. These authors claim,

however, that advances in the design of meta-materials allows for the creation of new

materials that exhibit the necessary properties. Meta-materials with such exotic prop-

erties have been described in a large number of studies for acoustics and elastodynamics

[23, 33, 48, 63, 112, 115, 155]. The caveat, however, is that the dispersion that creates

the exotic properties in meta-materials is generally able to perform as intended only

within a small range of frequencies. This characteristic alone imposes severe limits on

the bandwidth of any cloaking design. In other words, a cloak can be created (as shown

by Schurig et al. [136] for electrodynamics in the microwave region), but will only be

effective within the range of frequencies that the meta-materials hold their properties.

These limitations present two areas of research for which topology optimization

is particularly suited; specifically the creation of different cloaking designs that operate

in a finite frequency range (as admitted by Chen et al. [24] that other designs can

exist) and the design of meta-materials that exhibit the properties required by those

designs. Thus, three problems are proposed that use topology optimization: design of a

cloaking structure with real materials, design of meta-materials with exotic properties,

and design of a cloaking structure with exotic meta-materials.

Design of a cloaking structure with real materials

While nearly all of the work in the area of cloaking involves the use of exotic

meta-materials one exception exists where Huang et al. [79] create an electromagnetic

cloak in which they approximate the anisotropic behavior with a layered structure of

homogeneous materials. For the acoustic or elastic cloaking problem, however, no work

has been performed to show that a natural material is able or unable to provide some

degree of acoustic cloaking ability. It has already been shown in this document that

heterogeneous material designs created through topology optimization are capable of

guiding wave energy from one location to another. It is therefore possible that a cloaking
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structure could be created via the same principles in that the wave energy is guided

around the cloaked region via waveguides. The goal of this project would be to determine

in part the extent and conditions under which cloaking is possible with natural materials.

The setup for this problem can be seen in Figure 7.1. A number of variations of this

problem exist. Some possibilities include: changing the type of wave incident on the

scatterer (e.g. P-wave, SH-wave, or SV-wave), different types of scatterers (e.g. rigid,

non-rigid, void, arbitrary composition, etc.), ensuring cloaking for multiple angles of

incidence (some solutions may have a direction bias), cloaking for multiple frequencies

or a range of frequencies.

Figure 7.1: Problem setup for the cloaking problem with real material properties. A

wave enters from the left into the domain which contains a circular scattering object of

some material (green) different from the design materials (red and blue). The objective

would minimize the difference in the value of the Poynting vector at the right edge with

the same from a case without the scattering object.

Design of meta-materials with properties needed for cloaking

General work in the area of meta-materials started in the field of photonics where

there the split-ring resonator has become a well-known implementation as well as an
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easily explainable and reasonably intuitive model (see the review article by Lapine and

Tretyakov [99] for a recent snapshot of the state of photonic meta-materials). The ideas

from those studies have slowly progressed into the field of phononics, but the have largely

been hampered by the increased complexity of the governing equations. It is therefore

a ripe area for research, particularly in the design of new meta-materials using topology

optimization.

Studies that have designed and analyzed elastic and acoustic meta-materials gen-

erally intend to create materials with exotic properties such as negative effective density

or stiffness. The concept of negative effective mass density has been nicely summarized

by Milton and Willis [116] in a simple model of springs and masses embedded in a rigid

bar, the concept of which is shown in Figure 7.2. The simple derivation of the equa-

tions of motion for such a system results in an expression for total momentum that is a

function of frequency:

P =

(

M0 +
2Knm

2K −mω2

)

V = MV (7.1)

where P , V , and M are the externally seen momentum, velocity, and mass, respectively,

M0 is the rigid bar mass, K is the internal spring stiffness, m is the individual mass of

the n internal masses, and ω is the frequency of the forcing function. While internally

the dynamics are consistent, the external observer would measure a negative dynamic

mass because the bar would accelerate backward with a forward push (in a dynamic

sense). Milton and Willis [116] also extend their model to demonstrate the concept of

anisotropic effective mass density, a key need of meta-materials for cloaking structures.
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Figure 7.2: Schematic from Milton and Willis showing a “material” with a negative

effective mass density.

Most studies of negative/anisotropic density and stiffness meta-materials concen-

trate on various arrangements of hard objects in a soft matrix or elastic and rigid solids in

acoustic liquids [33, 112, 138, 155, 156]. Fang et al. [48], on the other hand use resonator

cavities to produce a negative bulk modulus, while Geunneau et al. [63] demonstrate

negative refraction using a specially structured meta-material that is designed to act like

a spring-mass system. The authors of these papers base their designs directly on the

idea of Helmholtz resonators, although the other studies can be represented in the same

manner. The key idea is that when a number of Helmholtz resonators are combined in

a periodic array, they can cause exotic and desirable dispersion characteristics in the

properties of the whole, i.e. the meta-material, even for wavelengths much larger than

the periodicity of the meta-material.

The goal of this project would be to create phononic meta-materials, specifically

those with anisotropic density and stiffness as is required for the cloaking designs of

Chen and Chan [23], Cummer and Schurig [32], and Cummer et al. [31]. Milton’s stud-

ies on meta-materials [111, 113] provide a methodology for obtaining effective material

properties from Bloch wave analysis that could be used to obtain and tailor phononic

meta-materials. Doing this would likely require the development of new objective and

constraint functions for use with topology optimization. These will likely include func-

tions for the effective mass density and stiffness as well as multiple components of the
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related effective mass and stiffness tensors. This project would not only demonstrate

that such materials exist and can be designed, but also would provide a tool and method-

ology for that purpose.

Design of cloaking structures with meta-material properties

In the derivation of a finite bandwidth cloaking device, Chen et al. [24] openly

state that their method, which is closely related to that of Pendry et al. [126], is not the

only way to create a cloak with a finite bandwidth. As such, their basic assumptions

may be the limiting factor in the performance of their device. By avoiding the regular

coordinate transformation method used in all current publications on the subject and

replacing it with the flexibility of topology optimization, it may be possible to improve

upon the results and inherent drawbacks in designing a phononic cloak. The idea of

this project is to investigate the capabilities of topology optimization in designing a

cloaking structure using materials with exotic properties such as anisotropic/negative

mass and stiffness like those provided by meta-materials. The problem setup will be

similar to that of 7.1, but with the use of meta-materials. The same sets of problem

variations would exist as well, but more focus could be spent on including various types

of meta-material properties such as purely negative vs. anisotropic density and stiffness.

Particular attention could be paid to materials that are successfully designed from other

proposed work in this subsection.

7.2.2 Topology optimization of vibrating energy harvesting structures

with nonlinear circuits

In chapter 5, vibrating piezoelectric energy harvesters were designed for harvest-

ing circuits containing linear components only. The practicality of linear harvesting

circuits is greatly limited by the fact that in nearly all energy harvesting situations the

electrical energy must be transformed to be compatible with whatever device that en-

ergy is powering, a process that generally requires nonlinear circuit components such as
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diodes in a rectifier. As such, the validity of the linear circuit analysis for the design of

energy harvesters is questionable. This, however, should not negate the direct applica-

bility of the methodology to create designs for mechanical damping through electrical

shunting [67], control [118, 158, 163], or sensing/actuation [34, 35, 78].

Analysis of piezoelectric energy harvesters with nonlinear circuits has been per-

formed by a number of groups [39, 97, 101, 102, 103, 96, 105, 104, 122, 123, 141, 140,

142, 139], but the methods used by these groups are incapable of incorporation with a

finite element model and thus lack generality, high fidelity, and the ability to design the

harvester using topology optimization. Appendix A details a methodology for analy-

sis of piezoelectric energy harvesters with nonlinear circuits for which this is possible,

wherein it is illustrated with examples some of the ways a linear harvesting circuit re-

sponse differs from that of a nonlinear circuit. Due to the difference in harvesting system

response between linear and nonlinear circuits it is highly likely that the optimal design

for the linear circuit is no longer optimal for the nonlinear circuit. As such, a design

methodology for piezoelectric energy harvesters with nonlinear circuits is needed. Using

the methodology described in appendix A, which uses a series of time-harmonic finite

element problems for its solution, it is possible to formulate an efficient topology opti-

mization methodology that would otherwise require an intractable transient nonlinear

analysis. Such a methodology would use a stationary point formulation common to

other nonlinear topology optimization problems [124] and would allow for the design of

piezoelectric harvesters that can take advantage of and account for the nonlinear effects

not present in linear circuits.
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annales de l’Ecole Normale Supérieur, pages 47–88, 1883.

[53] L. H. Frandsen, A. Harpøth, P. I. Borel, M. Kristensen, J. S. Jensen, and O. Sig-
mund. Bradband photonic crystal waveguide 60 degree bend obtained utilizing
topology optimization. Optics Express, 12(24):5916–5921, 2004.



www.manaraa.com

170

[54] Mary I. Frecker. Recent advances in optimization of smart structures and actu-
ators. Journal of Intelligent Material Systems and Structures, 14(4-5):207–216,
2003.

[55] W. R. Frei, D. A. Tortorelli, and H. T. Johnson. Topology optimization of a
photonic crystal waveguide termination to maximize directional emission. Applied
Physics Letters, 86(11), 2005.

[56] Moritz Frenzel. Topology optimization for wave problems. Master’s thesis, Uni-
versity of Colorado at Boulder, 2004.

[57] George A. Gazonas, Daniel S. Weile, Raymond Wildman, and Anuraag Mohan.
Genetic algorithm optimization of phononic bandgap structures. International
Journal of Solids and Structures, 43:5851–5866, 2006.

[58] Thomas L. Geers and Brett A. Lewis. Double asymptotic approximations for tran-
sient elastodynamics. International Journal of Solids and Structures, 34(11):1293–
1305, 1997.

[59] J. M. Gibert and E. M. Austin. Demonstration of optimizing piezoelectric polar-
ization in the design of a flextensional actuator. Structural and Multidisciplinary
Optimization, 33:471–480, 2007.

[60] Philip E. Gill, Walter Murray, and Michael A. Saunders. Snopt: An sqp algo-
rithm for large-scale constrained optimization. SIAM Journal on Optimization,
12(4):979–1006, 2002.

[61] T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas. Hypersonic
phononic crystals. Physical Review Letters, 94(115501), 2005.

[62] Karl F. Graff. Wave motion in elastic solids. Dover, New York, 1975.

[63] Sebastien Guenneau, Alexander Movchan, Gunnar Petursson, and S. Anantha
Ramakrishna. Acoustic metamaterials for sound focusing and confinement. New
Journal of Physics, 9(399), 2007.

[64] Yu. V. Gulyaev and V. P. Plesskii. Propagation of acoustic surface waves in
periodic structures. Sov. Phys. Usp, 32(1):51–74, 1989.

[65] Daniel Guyomar, Adrien Badel, Elie Lefeuvre, and Claude Richard. Toward energy
harvesting using active materials and conversion improvement by nonlinear pro-
cessing. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
52(4):584–595, 2005.

[66] Yoondo Ha and Seonho Cho. Design sensitivity analysis and topology optimiza-
tion of eigenvalue problems for piezoelectric resonators. Smart Materials and
Structures, 15:1513–1524, 2006.

[67] N. W. Hagood and A. von Flotow. Damping of structural vibrations with piezo-
electric materials and passive electrical networks. Journal of Sound and Vibration,
146(2):243–268, 1991.



www.manaraa.com

171

[68] Søren Halkjær, Ole Sigmund, and Jakob S. Jensen. Maximizing band gaps in plate
structures. Struct. Multidisc. Optim., 32:263–275, 2006.

[69] Isaac Harari. A survey of finite element methods for time-harmonic acoustics.
Computer Methods in Applied Mechanics and Engineering, 195:1594–1607, 2006.

[70] Isaac Harari and Uri Albocher. Studies of fe/pml for exterior problems of
time-harmonic elastic waves. Computer Methods in Applied Mechanics and
Engineering, 195:3854–3879, 2006.

[71] F. Hemez. The 3-node composite shell and isoparametric timoshenko beam ele-
ments. Technical Report CU-CAS-94-16, Center for Aerospace Structure, Univer-
sity of Colorado, 1994.

[72] Anne-Christine Hladky-Hennion and Jean-Noel Decarpigny. Analysis of the scat-
tering of a plane acoustic wave by a double periodic structure using the finite ele-
ment method: Application to alberich anechoic coatings. Journal of the Acoustical
Society of America, 90(6):3356–3367, 1991.

[73] K. M. Ho, C. T. Chan, and C. M. Soukoulis. Existence of photonic gap in periodic
delectric structures. Physical Review Letters, 65(25):3152–3155, 1990.

[74] Manfred Hofer, Norman Finger, Gunter Kovacs, Joachim Schoberl, Sabine Za-
glmayr, Ulrich Langer, and Reinhard Lerch. Finite-element simulation of wave
propagation in periodic piezoelectric saw structures. IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, 53(6), 2006.

[75] Po-Feng Hsieh, Tsung-Tsong Wu, and Jia-Hong Sun. Three-dimensional phononic
band gap calculations using the fdtd method and a pc cluster system. IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53(1):148–
158, 2006.

[76] Jin-Chen Hsu and Tsung-Tsong Wu. Lamb waves in binary locally reso-
nant phononic plates with two-dimensional lattices. Applied Physics Letters,
90(201904), 2007.

[77] Jin-Chen Hsu and Tsung-Tsong Wu. Propagation of lamb waves in phononic-
crystal plates. Journal of Mechanics, 23(3):223–228, 2007.

[78] Jin H. Huang, Jhao-Ming Chen, and Y. C. Shiah. Electromechanical analysis of a
piezoelectric beam used to drive a torsional microactuator. Journal of Intelligent
Material Systems and Structures, 18:543–553, 2007.

[79] Ying Huang, Yijun Feng, and Tian Jiang. Electromagnetic cloaking by layered
structure of homogeneous isotropic materials. Optics Express, 15(18):11133–
11141, 2007.

[80] Mahmoud I. Hussein, Karim Hamza, Gregory M. Hulbert, and Kazuhiro Saitou.
Optimal synthesis of 2d phononic crystals for broadband frequency isolation.
Waves in Random and Complex Media, 17(4):491–510, 2007.



www.manaraa.com

172

[81] Mahmoud I. Hussein, Karim Hamza, Gregory M. Hulbert, Richard A. Scott, and
Kazuhiro Saitou. Multiobjective evolutionary optimization of periodic layered
materials for desired wave dispersion characteristics. Struct. Multidisc. Optim.,
31(1):60–75, 2006.

[82] Mahmoud I. Hussein, Gregory M. Hulbert, and Richard A. Scott. Band-gap
engineering of elastic waveguides using periodic materials. In IMECE, November
16-21, Washington, DC USA, number 41886. ASME, 2003.

[83] Mahmoud I. Hussein, Gregory M. Hulbert, and Richard A. Scott. Hierarchical
design of phononic materials and structures. In IMECE, November 5-11, Orlando,
Florida USA, number 81325. ASME, 2005.

[84] Jakob S. Jensen. Topology optimization problems for reflection and dissipation of
elastic waves. Journal of Sound and Vibration, 301:319–340, 2007.

[85] Jakob S. Jensen and Ole Sigmund. Systematic design of photonic crystal structures
using topology optimization: Low-loss waveguide bends. Applied Physics Letters,
84(12):2022–2024, 2004.

[86] Jakob S. Jensen and Ole Sigmund. Topology optimization of photonic crystal
structures: a high-bandwidth low-loss t-junction waveguide. J. Opt. Soc. Am. B,
22(6):1191–1198, 2005.

[87] John D. Joannopoulos, Robert D. Meade, and Joshua N. Winn. Photonic crystals:
Molding the flow of light. Princeton University Press, 1995.

[88] Hajime Kando, Daisuke Yamamoto, Hikari Tochishita, and Michio Kadota. Rf
filter using boundary acoustic wave. Japanese Journal of Applied Physics,
45(5B):4651–4654, 2006.

[89] Zhan Kang and Liyong Tong. Integrated optimization of material layout and
control voltage for piezoelectric laminated plates. Journal of Intelligent Material
Systems and Structures, 19(8):889–904, 2008.

[90] Zhan Kang and Liyong Tong. Topology optimization-based distribution design
of actuation voltage in static shape control of plates. Computers and Structures,
86:1885–1893, 2008.

[91] Sunghwan Kim, William W. Clark, and Qing-Ming Wang. Piezoelectric energy
harvesting with a clamped circular plate: Analysis. Journal of Intelligent Material
Systems and Structures, 16(10):847–854, 2005.

[92] Sunghwan Kim, William W. Clark, and Qing-Ming Wang. Piezoelectric en-
ergy harvesting with a clamped circular plate: Experimental study. Journal of
Intelligent Material Systems and Structures, 16(10):855–863, 2005.

[93] Shuichi Kinoshita, Shinya Yoshioka, and Kenji Kawagoe. Mechanisms of structural
colour in the morpho butterfly: cooperation of regularity and irregularity in an
iridescent scale. Proc. R. Soc. Lond. B, 269:1417–1421, 2002.



www.manaraa.com

173

[94] Manvir S. Kushwaha. Band gap engineering in n-dimensional phononic crystals.
In IMECE, November 5-10, Chicago, Illinois, USA, number 13416. ASME, 2006.

[95] Manvir S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani. Acous-
tic band structure of periodic elastic composites. Physical Review Letters,
71(13):2022–2025, 1993.

[96] Mickael Lallart, L. Garbuio, L. Petit, Claude Richard, and Daniel Guyomar. Dou-
ble syncrhonized switch harvesting (dssh): a new energy harvesting scheme for
efficient energy extraction. IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, 55(10):2119–2130, 2008.

[97] Mickael Lallart and Daniel Guyomar. An optimizaed self-powered switching circuit
for non-linear energy harvesting with low voltage output. Smart Materials and
Structures, 17(035030), 2008.

[98] Philippe Langlet, Anne-Christine Hladky-Hennion, and Jean-Noel Decarpigny.
Analysis of the propagation of plane acoustic waves in passive periodic materi-
als using the finite element method. Journal of the Acoustical Society of America,
98(5):2792–2800, 1995.

[99] M. Lapine and S. Tretyakov. Contemporary notes on metamaterials. IET
Microwaves, Antennas and Propagation, 1(1):3–11, 2007.

[100] Anders A. Larsen, Bogi Laksafoss, Jakob Søndergaard Jensen, and Ole Sigmund.
Topological material layout in plates for vibration suppression and wave propaga-
tion control. Structural and Multidisciplinary Optimization, 2009.

[101] Elie Lefeuvre, Adrien Badel, A. Benayad, L. Lebrun, Claude Richard, and Daniel
Guyomar. A comparison between several approaches of piezoelectric energy har-
vesting. J. Phys. IV France, 128:177–186, 2005.

[102] Elie Lefeuvre, Adrien Badel, Claude Richard, and Daniel Guyomar. Piezoelectric
energy harvesting device optimization by synchronous electric charge extraction.
Journal of Intelligent Material Systems and Structures, 16(10):865–876, 2005.

[103] Elie Lefeuvre, Adrien Badel, Claude Richard, and Daniel Guyomar. Energy
harvesting using piezoelectric materials: Case of random vibrations. Journal of
Electroceramics, 19:349–355, 2007.

[104] Elie Lefeuvre, Gael Sebald, Daniel Guyomar, Mickael Lallart, and Claude Richard.
Materials, structures and power interfaces for efficient piezoelectric energy harvest-
ing. Journal of Electroceramics, 2009.

[105] G. A. Lesieutre, G. K. Ottman, and H. F. Hofmann. Damping as a result of
piezoelectric energy harvesting. Journal of Sound and Vibration, 269(3-5):991–
1001, 2004.

[106] Zhengyou Liu, C. T. Chan, Ping Sheng, A. L. Goertzen, and J. H. Page. Elastic
wave scattering by periodic structures of spherical objects: Theory and experi-
ment. Physical Review B, 62(4):2446–2457, 2000.



www.manaraa.com

174

[107] John Lysmer and Roger L. Kuhlemeyer. Finite dynamic model for infinite media.
J. Eng. Mech. Div. ASCE, 95:859–877, 1969.

[108] Stephen A. Maas. Nonlinear microwave and RF circuits. Artech House Publishers,
2nd edition, 2003.

[109] Dragan Marinkovic, Heinz Koppe, and Ulrich Gabbert. Accurate modeling of the
electric field within piezoelectric layers for active composite structures. Journal of
Intelligent Material Systems and Structures, 18:503–513, 2007.

[110] Carmelo Militello and Carlos A. Felippa. The first andes elements: 9-dof plate
bending triangles. Computer Methods in Applied Mechanics and Engineering,
93:217–246, 1991.

[111] Graeme W. Milton. The theory of composites. Cambridge University Press,
Cambridge, 2002.

[112] Graeme W. Milton. New metamaterials with macroscopic behavior outside that
of continuum elastodynamics. New Journal of Physics, 9(359), 2007.

[113] Graeme W. Milton. Waves in composites and metamaterials, 2007. Course notes:
http://imechanica.org/node/870.

[114] Graeme W. Milton, Marc Briane, and John R. Willis. On cloaking for elasticity
and physical equations with a transformation invariant form. New Journal of
Physics, 8(248), 2006.

[115] Graeme W. Milton and Nicolae-Alexandru P. Nicorovici. On the cloaking effects
associated with anomalous localized resonance. Proc. R. Soc. A, 462:3027–3059,
2006.

[116] Graeme W. Milton and John R. Willis. On modifications of newton’s second law
and linear continuum elastodynamics. Proc. R. Soc. A, 463:855–880, 2007.

[117] Changko Mo, Wright Rika, and William W. Clark. The effect of electrode pattern
on the behaviour of piezoelectric actuators in a circular diaphragm structure.
Journal of Intelligent Material Systems and Structures, 18(5):467–476, 2007.

[118] Allahyar Montazeri, Javad Poshtan, and Aghil Yousefi-Koma. The use of ’particle
swarm’ to optimize the control system in a pzt laminated plate. Smart Materials
and Structures, 17(045027), 2008.

[119] D. P. Morgan. History of saw devices. In IEEE International Frequency Control
Symposium, pages 439–460, 1998.

[120] Osama M. Mukdadi, Subhendu K. Datta, and Martin L. Dunn. Acoustic-phonon
dispersion in nanowires. Journal of Applied Physics, 97(7), 2005.

[121] Roy H. Olsson, James G. Fleming, Ihab F. El-Kady, Melanie R. Tuck, and
Frederick B. McCormick. Micromachined bulk wave acoustic bandgap devices.
In in proceedings of the 14th International Conference on Solid-State Sensors,
Actuators, and Microsystems, pages 317–321, 2007.



www.manaraa.com

175

[122] G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre. Adaptive
piezoelectric energy harvesting circuit for wireless remote power supply. IEEE
Transactions on Power Electronics, 17(5):669–676, 2002.

[123] Geffrey K. Ottman, Heath F. Hofmann, and George A. Lesieutre. Optimized
piezoelectric energy harvesting circuit using step-down converter in discontinuous
conduction mode. IEEE Transactions on Power Electronics, 18(2):696–703, 2003.

[124] Joseph M. Pajot. Topology Optimization of Geometrically Nonlinear Structures
Including Thermo-Mechanical Coupling. PhD thesis, University of Colorado at
Boulder, 2006.

[125] J. B. Pendry. Negative refraction makes a perfect lens. Physical Review Letters,
85(18):3966–3969, 2000.

[126] J. B. Pendry, David Schurig, and D. R. Smith. Controlling electromagnetic fields.
Science, 312(1780), 2006.

[127] Yan Pennec, B. Djafari-Rouhani, J. O. Vasseur, Abdelkrim Khelif, and P. A.
Deymier. Tunable filtering and demultiplexing in phononic crystals with hollow
cylinders. Physical Review E, 69(046608), 2004.

[128] Dennis W. Prather, Shouyuan Shi, Janusz Murakowski, Garrett J. Schneider,
Ahmed Sharkawy, Caihua Chen, and Binglin Miao. Photonic crystal structures
and applications: Perspective, overview, and development. IEEE Journal of
Selected Topics in Quantum Electronics, 12(6):1416–1437, 2006.

[129] S. Priya. Advances in energy harvesting using low profile piezoelectric transducers.
Journal of Electroceramics, 19:167–184, 2007.

[130] John William Strutt Rayleigh. On the remarkable phenomenon of crystalline
reflexion described by prof. stokes. Phil. Mag., 26:256–265, 1888.

[131] Jamil M. Renno, Mohammed F. Daqaq, and Daniel J. Inman. On the optimal
energy harvesting from a vibration source. Journal of Sound and Vibration, 320(1-
2):386–405, 2009.

[132] Vittorio Rizzoli, Alessandro Lipparini, Alessandra Costanzo, Franco Mastri, Clau-
dio Cecchetti, Andrea Neri, and Diego Masotti. State-of-the-art harmonic-balance
simulation of forced nonlinear microwave circuits by the piecewise technique. IEEE
Transactions on Microwave Theory and Techniques, 40(1):12–28, 1992.

[133] V. Romero-Garcia, E. Fuster-Garcia, L. M. Garcia-Raffi, and J. V. Sanchez-
Perez. Acoustic barriers based on sonic crystals. In in proceedings of the
ASME International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, Sept. 4-7, Las Vegas, Nevada, 2007.

[134] Zhichao Ruan, Min Yan, Curtis W. Neff, and Min Qiu. Ideal cylindrical cloak:
perfect but sensitive to tiny perturbations. Physical Review Letters, 99(113903),
2007.



www.manaraa.com

176

[135] K. Schittkowski. Nlpql: A fortran subroutine solving constrained nonlinear pro-
gramming problems. Annals of Operations Research, 5:485–500, 1985.

[136] David Schurig, J. J. Mock, B. J. Justice, Steven A. Cummer, J. B. Pendry, A. F.
Starr, and D. R. Smith. Metamaterial electromagnetic cloak at microwave fre-
quencies. Science, 314:977–980, 2006.

[137] A. P. Seyranian, E. Lund, and N. Olhoff. Multiple eigenvalues in structural opti-
mization problems. Struct. Multidisc. Optim., 8(4):207–227, 1994.

[138] Ping Sheng, Jun Mei, Zhengyou Liu, and Weijia Wen. Dynamic mass density and
acoustic metamaterials. Physica B, 394(2):256–261, 2007.

[139] Y. C. Shu. Energy Harvesting Technologies, chapter Performance evaluation of
vibration-based piezoelectric energy scavengers, pages 75–105. Springer, 2009.

[140] Y. C. Shu and I. C. Lien. Analysis of power output for piezoelectric energy
harvesting systems. Smart Materials and Structures, 15:1499–1512, 2006.

[141] Y. C. Shu and I. C. Lien. Efficiency of energy conversion for a piezoelectric power
harvesting system. Journal of Micromechanics and Microengineering, 16:2429–
2438, 2006.

[142] Y. C. Shu, I. C. Lien, and W. J. Wu. An improved analysis of the sshi interface
in piezoelectric energy harvesting. Smart Materials and Structures, 16:2253–2264,
2007.

[143] M. Sigalas and E. N. Economou. Band structure of elastic waves in two dimen-
sional systems. Solid State Communications, 86(3):141–143, 1993.

[144] M. M. Sigalas. Defect states of acoustic waves in a two-dimensional lattice of solid
cylinders. J. Appl. Phys., 84(6):3026–3030, 1998.

[145] M. M. Sigalas and E. N. Economou. Elastic and acoustic wave band structure.
Journal of Sound and Vibration, 158(2):377–382, 1992.

[146] Ole Sigmund and Jakob Søndergaard Jensen. Systematic design of phononic band-
gap materials and structures by topology optimization. Philosophical Transactions
of the Royal Society A, 361(1806):1001–1019, 2003.

[147] Henry A. Sodano, Daniel J. Inman, and Gyuhae Park. A review of power harvest-
ing from vibration using piezoelectric materials. The Shock and Vibration Digest,
36(3):197–205, 2004.

[148] Roman Stainko and Ole Sigmund. Tailoring group velocity by topology optimiza-
tion. In WCSMO07, May 21-25, Seoul, Korea. ISSMO, 2007.

[149] George Gabriel Stokes. On a remarkable phenomenon of crystalline reflection.
Proceedings of the Royal Society, 1885.

[150] Krister Svanberg. The method of moving asymptotes - a new method for structural
optimization. Int. J. Numer. Meth. Engng, 24(2):359–373, 1987.



www.manaraa.com

177

[151] Krister Svanberg. A class of globally convergent optimization methods based on
conservative convex separable approximzations. SIAM Journal on Optimization,
12(2):555–573, 2002.

[152] Yukihiro Tanaka and Shin-Ichiro Tamura. Surface acoustic waves in two-
dimensional periodic elastic structures. Physical Review B, 58(12):7958–7965,
1998.

[153] Yukihiro Tanaka and Shin-Ichiro Tamura. Acoustic stop bands of surface and
bulk modes in two-dimensional phononic lattices consisting of aluminum and a
polymer. Physical Review B, 60(19):13294–13297, 1999.

[154] Salvatore Torquato. Random heterogeneous materials: Microstructure and
macroscopic properties. Springer, Harrisonburg, 2002.

[155] Daniel Torrent and Jose Sanchez-Dehesa. Acoustic metamaterials for new two-
dimensional sonic devices. New Journal of Physics, 9(323), 2007.

[156] Daniel Torrent and Jose Sanchez-Dehesa. Anisotropic mass density by two-
dimensional acoustic metamaterials. New Journal of Physics, 10(023004), 2008.

[157] D. A. Tortorelli and P. Michaleris. Design sensitivity analysis: Overview and
review. Inverse Problems in Engineering, 1(1):71–105, 1994.

[158] S. Y. Wang, K. Tai, and S. T. Quek. Topology optimization of piezoelectric sen-
sors/actuators for torsional vibration control of composite plates. Smart Materials
and Structures, 15:253–269, 2006.

[159] Eli Yablonovitch. Inhibited spontaneous emission in solid-state physics and elec-
tronics. Physical Review Letters, 58(20):2059–2062, 1987.

[160] Eli Yablonovitch. Localization and propagation of classical waves in random and
periodic structures, chapter Photonic Band Gaps. Plenum, New York, 1993.

[161] Eli Yablonovitch and T. J. Gmitter. Photonic band structure: The face-centered-
cubic case. Physical Review Letters, 63(18):1950–1953, 1989.

[162] Xiangdong Zhang and Zhengyou Liu. Negative refraction of acoustic waves in
two-dimensional phononic crystals. Applied Physics Letters, 85(2):341–343, 2004.

[163] Guozhong Zhao, Biaosong Chen, and Yuanxian Gu. Control-structural design
optimization for vibration of piezoelectric intelligent truss structures. Structural
and Multidisciplinary Optimization, 2009.

[164] Bin Zheng, Ching-Jui Chang, and Hae Chang Gea. Topology optimization
of energy harvesting devices using piezoelectric materials. Structural and
Multidisciplinary Optimization, 38(1):17–23, 2009.

[165] Yibing Zheng and Xiaojun Huang. Anisotropic perfectly matched layers for elastic
waves in cartesian and curvilinear coordinates. In Earth Resources Laboratory
2002 Industry Consortium Meeting, Dept. of Earth, Atmospheric, and Planetary
sciences, Cambridge, MA, USA, 2002.



www.manaraa.com

Appendix A

Energy Harvesting with Nonlinear Circuits

A.1 Introduction

Piezoelectric harvesting systems consist of two distinct, but coupled parts: the

piezoelectric harvesting structure and the harvesting circuit. The harvesting structure

consists of a piezomechanical system under harmonic or broadband vibration. The

piezoelectric component of this system converts mechanical strain to electrical charge

and voltage, which vary as a function of time. The design of harvesting structures con-

sidered in chapter 6 and elsewhere (see Anton and Sodano (2007) and Erturk and Inman

(2008) for recent reviews) consider only linear harvesting circuits. Generally, however,

the harvesting circuit is designed to condition the electrical energy for compatibility,

typically by using full-bridge rectifiers or other circuit components that have nonlinear

voltage/current relationships. A number of specialized circuits have been developed to

serve this purpose with various performance improvements including synchronous elec-

tric charge extraction [102], synchronized switch harvesting on inductor circuits (SSHI)

[65, 142], and others [105, 123]. Lefeuvre et al. [101, 104] give a review of many of these

harvesting circuits.

A number of authors have provided simplified analysis techniques to analyze non-

linear harvesting circuits. Shu and Lien [141, 140] provide an analytical analysis of

systems with full-bridge rectifiers, which expands on previous work by Ottman et al.

[122]. Shu, Lien, and Wu [142] and Lallart and Guyomar [97] perform similar analysis
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on SSHI-type harvesting circuits and Lallart et al. [96] for DSSH-type circuits. The

methods used in these papers all make assumptions on the shape of the voltage and cur-

rent waveforms, which are guided by assuming that the diodes behave ideally, i.e. they

are perfect conductors for positive voltage and perfect insulators for negative voltage.

In a different study, Elvin and Elvin [39] make the same assumptions on the diodes but

use a numerical transient electrical circuit simulator to calculate the harvesting power.

In addition to the simplified circuit analysis techniques, all of these analysis techniques

also use lumped parameter models for the piezoelectric harvesting structure, generally

at resonance only. There are currently no studies that have incorporated nonlinear

harvesting circuit analysis with a high fidelity finite element model of the harvesting

structure. As such, current models and methods are incapable of analyzing the mechan-

ical and electrical response from effects such as higher order feedback from the circuit

or non-saturated diodes from low vibration environments. These are phenomena that

have not yet been shown for energy harvesters with nonlinear circuits. Additionally, the

design of piezoelectric harvesting structures, which is currently performed with linear

circuit models [46, 40, 44, 45] (see also chapter 6 of this document), is limited by the

lack of an accurate solution scheme.

Here, a methodology for quantitatively analyzing nonlinear energy harvesting cir-

cuits connected to a piezoelectric harvesting structure is developed. The goal is to

provide an accurate prediction/evaluation tool for piezoelectric energy harvesting sys-

tems with nonlinear circuits and to at least partially answer the question of whether the

nonlinearities play a significant role in the response of such systems. The methodology

is based on the harmonic balance technique commonly used in the analysis of nonlinear

microwave and radio frequency circuits. The harmonic balance algorithm developed by

Rizzoli et al. [132] and described further by Maas [108] is modified and expanded by

introducing a variable current source, namely the piezoelectric harvester, which is sub-

ject to circuit feedback. In illustrative examples, piezoelectric harvesting systems are
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analyzed with full-bridge rectifier circuits where the piezoelectric harvester is subject to

a harmonic force. It is then shown that the assumptions of previous analytical models

can be overly restrictive, particularly when the diodes are not saturated (i.e. not acting

ideally). In this case there is a definite dependence on the magnitude of vibration to

which the piezoelectric harvester is subjected, whereas in the analytical models there is

no dependence. A second important finding is described in the examples where feedback

from the nonlinear circuit into the piezoelectric harvesting structure will excite higher

order vibrations, which could potentially excite higher order structural modes in either

the harvesting structure or host to which it is attached. This is an effect that may be

of concern in some vibration sensitive systems.

This appendix is organized as follows. First the analysis methodology is presented

with descriptions of the circuit components, the piezoelectric harvester models that

are used, and the implementation of the modified harmonic balance algorithm. Next,

examples of systems with lumped parameter and finite element models are provided

with discussion. This is finished with a conclusion.

A.2 Analysis methodology

The following outlines a general methodology for the analysis of a linear piezo-

electric harvesting structure coupled to a nonlinear circuit as applied to a full-bridge

rectifier circuit. The system consists of two distinct, but interdependent, components

as shown in Figure A.1: the electrical circuit, which may consist of both linear and

nonlinear elements, and the piezoelectric harvesting structure, for which both lumped

parameter and finite element models are considered. For the electrical circuit a full-

bridge rectifier is considered. The two components are coupled through the voltages

and currents they share. An accurate solution for both the electrical and structural

responses of this fully coupled electromechanical problem is sought.
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Figure A.1: Schematic of the coupled electromechanical energy harvesting system with

a lumped parameter model and full-bridge rectifier.

A.2.1 Circuit model

The model of the electrical circuit may consist of both linear and nonlinear ele-

ments. The full-bridge rectifier consists of four nonlinear diodes connected to a resistor

and capacitor in parallel, which are linear. The diodes are assumed to have a cur-

rent/voltage relationship of the Shockley diode form:

idiode (t) = Isat

(

exp

(

v (t)

ηδ

)

− 1

)

(A.1)

where Isat, η, and δ are the diode reverse-leakage current, ideality factor, and thermal

voltage, respectively. In the linear circuit components, the current/voltage relationship

can be formulated in the frequency domain as:

I lin =

(

1

R
+ jωC

)

∆V (A.2)

where the resistance R is specified and the capacitance C is usually considered to be

“sufficiently large” such that the ripple voltage is small relative to the DC voltage. Here,

the capacitance is set by assuming a consistent RC time constant τ such that C = τ/R,

which allows for a “sufficiently large” capacitance but which is not so large to cause

numerical difficulties.
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A.2.2 Piezoelectric harvester model

The equations of motion for the piezoelectric harvester can be formulated using

a number of methods. In this study, lumped parameter and finite element models are

used as described here.

A.2.2.1 Lumped parameter model

In the lumped parameter model of the piezoelectric harvester the governing equa-

tions for a single degree of freedom model can be written as:

mü+ cu̇+ ku+ θVpiezo = F

−θu̇+ CpV̇piezo = −I lin
piezo

(A.3)

where m, c, k, θ, Cp, u, Vpiezo, F , and I lin
piezo are the lumped mass, mechanical damping,

stiffness, piezoelectric coupling, piezoelectric capacitance, displacement, external force,

and current, respectively, and the overdot is differentiation with respect to time. Using

the time-harmonic assumptions u = u0e
jωt, Vpiezo = V0e

jωt, F = F0e
jωt, I lin

piezo = I0e
jωt

with angular frequency ω and rearranging (A.3) so that the voltage is the independent

variable with the current as the dependent variable results in the system:







(

k + jωc− ω2m
)

0

jωθ −1













u

I lin
piezo






=







F − θVpiezo

jωCpVpiezo






(A.4)

from which one can obtain the current as a function of voltage and external force.

Multiple degree of freedom models can also be easily formulated in this manner.

Following Shu and Lien [140], several non-dimensional quantities can be defined

for the lumped parameter model, which are reproduced here for convenience:

k2
e =

θ2

kCp
, ζ =

c

2
√
km

, ωsc =

√

k

m
, Ω =

ω

ωsc
(A.5)

where ke is the electromechanical coupling coefficient, ζ is the mechanical damping ratio,

ωsc is the short circuit natural frequency, and Ω is the normalized frequency.
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A.2.2.2 Finite element model

When using a finite element model as the piezoelectric harvester, the system of

equations consists of a large number of displacement and voltage degrees of freedom to

produce a high fidelity model. The system of finite element equations can be written

under time-harmonic assumptions as:






(

K + jωC− ω2M
)

Θ

ΘT Cp













u

V






=







F

Q






→ K̃ũ = f̃ (A.6)

where K, C, M, Θ, and Cp are the stiffness, damping, mass, piezoelectric coupling, and

capacitance matrices, u and V are the displacement and voltage solution vectors, F and

Q are the external force and charge vectors, respectively. This system represents the

unconnected piezoelectric harvester. To facilitate the calculation of generated harvester

current, which is used to couple the harvester to the circuit, a low value test resistor

Rtest is added to the system connecting a harvester voltage degree of freedom Vpeizo and

a new voltage degree of freedom Vtest. The lumped parameter form for this resistor in

time-harmonic analysis is:

−j 1

ωRtest







1 −1

−1 1






Ve = Qe. (A.7)

The low resistivity of the resistor ensures its influence on the system dynamics is mini-

mal, yet it enables the calculation of the generated harvester current I lin
piezo via:

I lin
piezo =

Vtest − Vpiezo

Rtest
. (A.8)

The new voltage degree of freedom Vtest can then also be used as the harvester voltage

since Vpiezo ≈ Vtest.

A.2.3 Solution algorithm

To solve the combined system of piezoelectric harvesting structure and electric

harvesting circuit, a modified harmonic balance algorithm is used. In a linear circuit
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with a time-harmonic forcing function (in our case the mechanical forcing function on

the piezoelectric harvester) the voltage and current response is also time-harmonic with

the same frequency. If nonlinear elements are included, however, higher order responses

occur and the system is no longer harmonic with a single frequency. The general idea

behind the harmonic balance algorithm is to assume that the nonlinear elements of the

circuit can be represented by convergent polynomial expansions. Under this assumption,

the response of the circuit will be a harmonic function of the driving frequency and its

harmonics (i.e. 0, f0, 2f0, 3f0, . . .). Using this information, one can also use convergent

series approximations for the circuit voltage and current waveforms, since all polynomial

operations on these harmonic functions result in the same set of harmonic functions.

Thus the nonlinear problem can be separated into a set of linear harmonic problems,

one for each frequency. In the harmonic balance algorithm the goal is to “balance”

the voltages and currents across and through each of the circuit components for each

of these harmonic problems, thereby solving for the series coefficients of the voltage

and current waveforms, which can be found via Fourier Transforms. This formulation

allows for the nonlinear steady-state problem to be solved via a sequence of simple linear

time-harmonic subproblems.

In the harmonic balance algorithm described by Maas (2003), one can setup

the problem as either a nodal or port formulation. The approach developed here is

based on the nodal formulation where at each circuit node (circuit junction) Kirchhoff’s

current law is used to form a residual of currents into the node for a given set of nodal

voltages. More specifically, the currents for each of the harmonic subproblems must be

“balanced” at each node. The balancing is then performed by minimizing the current

residuals through some residual reduction technique such as Newton’s method. The

series approximation can also be truncated, whereby solution accuracy is sacrificed for

a reduction in computational effort.

This basic procedure features a robust convergence only for circuits with a mod-
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erately nonlinear behavior. In the presence of strong nonlinearities, which are caused by

diodes in the present problem, Newton and Newton-like methods are not guaranteed to

converge and the linearized sub-problem may suffer from ill-conditioning. This was also

observed in the present study. In order to remedy this, Rizzoli et al. [132] introduced

a piecewise formulation that splits the nonlinearity between voltage and current by in-

troducing a fictitious state variable. This technique uses the port formulation of the

circuit problem where voltages are measured across ports rather than at nodes and the

port currents form the residuals, resulting in a better-conditioned system. In the port

formulation, however, certain circuits such as full-bridge rectifiers lead to a highly dis-

connected (singular) admittance matrix used in the harmonic balance technique. Maas

[108] outlines several techniques for addressing this problem, but they generally add to

the complexity of the algorithm.

Here, rather than use either the nodal or port formulations of the harmonic bal-

ance algorithm, a hybrid approach is developed that provides both clarity and stability

to the algorithm for the types of problems of concern to piezoelectric energy harvest-

ing. In particular, the response of a piezoelectric harvester connected to a full-bridge

rectifier, as shown in Figure A.2, is needed. The hybrid formulation is based on the

nodal approach where the currents into the three nodes form three vectors harmonic

coefficient residuals. In addition, as a matter of numerical stabilization, the nonlinear

splitting technique of Rizzoli et al. [132] is used to parameterize the voltage current

relationship for the diodes as:

vdiode (x (t)) =



















V̂ + 1
α

ln
(

1 + α
[

x (t)− V̂
])

, V̂ ≤ x (t)

x (t) , x (t) ≤ V̂

idiode (x (t)) =



















Isat

(

exp
(

αV̂
)(

1 + α
[

x (t)− V̂
])

− 1
)

, V̂ ≤ x (t)

Isat (exp (αx (t))− 1) , x (t) ≤ V̂

(A.9)

where x (t) is the state variable, α = 1/ηδ, and V̂ is a parameter chosen to optimize
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algorithm performance. Via Rizzoli et al. [132], V̂ = ln (γ/αIsat) /α is used with γ = 1.

There are now four additional state variables, which can be written in the same set

of harmonic functions as the current and voltage because the parametric form can be

written in a convergent Taylor series. From these state variables constraint equations

are written for the voltage across the diodes. Overall, this results in seven residual

equations:

ilin1 + iNL
1 = ilin1 (v1, v2) + idiode

1 (x1) + idiode
2 (x2) = 0

ilin2 + iNL
2 = ilin2 (v1, v2)− idiode

3 (x3)− idiode
4 (x4) = 0

ilinpiezo + iNL
3 = ilinpiezo (v3)− idiode

1 (x1) + idiode
4 (x4) = 0

v1 − v3 + vdiode
1 (x1) = 0

v1 + vdiode
2 (x2) = 0

−v2 + vdiode
3 (x3) = 0

−v2 + v3 + vdiode
4 (x4) = 0

(A.10)

for seven variables v1, v2, v3, x1, x2, x3, x4. Transforming these into the frequency

domain and taking only the DC component and K lowest harmonics results in a residual

vector of size 7 · (K + 1) whose solution solves the electromechanical problem.

Figure A.2: Full-bridge rectifier circuit with linear piezoelectric harvester.

To solve the set of residual equations the hybrid harmonic balance algorithm
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outlined in Algorithm A-1 is used, which employs Newton’s method. The algorithm

solves the nonlinear circuit equations for a constant driving frequency f0, a constant

harvesting resistance R, and a constant force magnitude Y0 applied to the piezoelectric

harvester. The algorithm requires calculations both in the time and frequency domains,

for which the voltages, currents, and state variables are written in lower case in the time

domain (v, i, and x) and upper case in the frequency domain (V , I, and X). Frequency

transforms are performed via the Fast Fourier Transform algorithm. Newton’s method

requires the computation of the Jacobian of the residual equations. This sub-step is

described in detail in the next section.

Algorithm A-1

1) Form a vector of driving frequency and harmonics:

~f = (0, f0, 2f0, 3f0, . . . , , kf0) k = 0 . . . K

2) Make an initial estimate of the voltage and state variable waveforms in the

frequency domain:

V1 = V 0
1

(

~f
)

, V2 = V 0
2

(

~f
)

, V3 = V 0
3

(

~f
)

X1 = X0
1

(

~f
)

, X2 = X0
2

(

~f
)

, X3 = X0
3

(

~f
)

, X4 = X0
4

(

~f
)

3) Using the voltages, calculate the linear currents and their gradients w.r.t. the

voltages at each of the nodes for the piezoelectric harvester:
[

I lin
piezo

(

~f
)

,
dIlin

piezo

dV3

(

~f
)

]

= Fpiezo

(

~f, V3, Y0

)

4) Similarly, calculate the linear currents and their gradients for the linear circuit

components:
[

I lin
1

(

~f
)

,
dIlin

1
dV1

(

~f
)

,
dIlin

1
dV2

(

~f
)

, I lin
2

(

~f
)

,
dIlin

2
dV1

(

~f
)

,
dIlin

2
dV2

(

~f
)]

=

Flinearcircuit

(

~f, V1, V2

)

5) Transform the state variables into the time domain with imaginary unit j:

xp (t) =
K
∑

q=−K

Xp (q · f0) exp (q · (2πj · f0t)), p = 1 . . . 4
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6) Calculate the nonlinear currents at each of the nodes and the voltages across each

of the diodes using the state variable waveforms:

iNL
1 = Fdiodes

1 (x1, x3) = idiode
1 (x1) + idiode

2 (x3)

iNL
2 = Fdiodes

2 (x2, x3) = −idiode
3 (x3)− idiode

4 (x4)

iNL
3 = Fdiodes

3 (x1, x2, x3) = −idiode
1 (x1) + idiode

4 (x4)

vNL
1 = vdiode

1 (x1)

vNL
2 = vdiode

2 (x2)

vNL
3 = vdiode

3 (x3)

vNL
4 = vdiode

4 (x4)

7) Calculate the gradients of the nonlinear currents w.r.t. the state variables:

gNL
m,p = diNL

m

dxp
=



















αIsat exp
(

αV̂
)

, V̂ ≤ x (t)

αIsat exp (αx (t)) , x (t) ≤ V̂

8) Calculate the gradients of the voltages across the diodes w.r.t. the state variables:

hNL
n,p = dvNL

n

dxp
=



















(

1 + α
[

x (t)− V̂
])

−1
, V̂ ≤ x (t)

1, x (t) ≤ V̂

9) Transform the nonlinear currents, diode voltages, and all gradients into the

frequency domain using Fast Fourier Transforms and take only the frequency

components in
−→
f :

ĨNL
m = fft

(

iNL
m

)

, G̃NL
m,p = fft

(

gNL
m,p

)

Ṽ NL
n = fft

(

vNL
n

)

, H̃NL
n,p = fft

(

hNL
n,p

)

INL
m

(

~f
)

= reduce
(

ĨNL
m

)

, GNL
m,p

(

~f
)

= reduce
(

G̃NL
m,p

)

V NL
n

(

~f
)

= reduce
(

Ṽ NL
n

)

,HNL
n,p

(

~f
)

= reduce
(

H̃NL
n,p

)
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10) Form the residual vector containing the sum of the currents at the nodes and the

voltage-state variable constraint for each diode:

−→
R =











































I lin
1 + INL

1

I lin
2 + INL

2

I lin
piezo + INL

3

V1 − V3 + V NL
1

V1 + V NL
2

−V2 + V NL
3

−V2 + V3 + V NL
4











































11) Form the Jacobian (see section Formulation of the Jacobian).

J = FJacobian

(

dIlin
m

dVn
, Gm,p,Hn,p

)

12) Use the Jacobian and residual vector to update the voltages and state variables via

a Newton iteration:






~V

~X







new

=







~V

~X






− J−1 ~R

13) If the inverse of the Jacobian does not reduce the residual then use the

pseudo-inverse.






~V

~X







new

=







~V

~X






− J+ ~R

14) If the norm of the residual vector ǫ is sufficiently small, then the solution has

converged, otherwise return to step 3.

ǫ =
∣

∣

∣

~R
∣

∣

∣

Regarding the use of the pseudo-inverse in step 13. Firstly, while the piecewise

nonlinearity splitting for the diodes was found to result in a better-conditioned nonlin-

ear system (i.e. Jacobian), at high voltages or with a large number of harmonics the

Jacobian was still often ill-conditioned. Much of this is due to the nature of the linear

components of the circuit (i.e. resistor/capacitor and piezoelectric harvester) whose gra-
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dients and higher harmonic currents increase dramatically with voltage and frequency

while the gradients for the nonlinear components stay generally constant. The pseudo-

inverse ignores singular or nearly singular values and as a result does not suffer from

ill-conditioning, yet it retains most of the important information for this problem. Sec-

ondly, the pseudo-inverse is not computationally expensive due to the small size of the

Jacobian in these problems. In practice the pseudo-inverse was used sparingly, usually

in the initial Newton step where the regular inverse would predict a new variable set

that often increased the residual by many orders of magnitude, indicating a poor initial

guess for the variables.

A.2.4 Formulation of the Jacobian

In the frequency domain the currents, voltages, and state variables are complex

valued and only represent half of the waveform for a given f > 0, corresponding to

the positive, but not negative, frequency components of the signal. The concept of

negative frequency may be confusing at first, but consider that in order to reconstruct the

waveform from the frequency domain to the time domain one must sum the components

from −K to K:

im (t) =
K
∑

k=−K

Im (k · f0) exp (k · (2πj · f0t))

vn (t) =
K
∑

l=−K

Vn (l · f0) exp (l · (2πj · f0t))

xp (t) =
K
∑

q=−K

Xp (q · f0) exp (q · (2πj · f0t))

(A.11)

where negative frequency components of the transform are the conjugate (·)∗ at the

same positive frequency:

Im (−k · f0) = I∗m (k · f0)

Vn (−l · f0) = V ∗

n (l · f0)

Xp (−q · f0) = X∗

p (q · f0)

. (A.12)
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The derivative of the currents and voltages w.r.t. the state variables then must consider

both positive and negative frequency components:

dIm (k · f0) = ∂Im(k·f0)
∂Xp(q·f0)

dXp (q · f0) + ∂Im(k·f0)
∂Xp(−q·f0)

dXp (−q · f0)

dVn (l · f0) = ∂Vn(l·f0)
∂Xp(q·f0)

dXp (q · f0) + ∂Vn(l·f0)
∂Xp(−q·f0)

dXp (−q · f0)

(A.13)

where
∂Im(k·f0)
∂xp(q·f0)

= Gm,p ((k − q) · f0)

∂Im(k·f0)
∂xp(−q·f0)

= Gm,p ((k + q) · f0)

∂Vn(l·f0)
∂xp(q·f0)

= Hn,p ((l − q) · f0)

∂Vn(l·f0)
∂xp(−q·f0)

= Hn,p ((l + q) · f0)

. (A.14)

for which the (k − q) and (l − q) terms may have negative frequency components. Be-

cause of the negative frequencies and the conjugate in the transform components, the

gradients must be separated into real and imaginary parts:







dIR
m (k · f0)

dII
m (k · f0)






=
[

JG
mp (k, q)

]







dXR
p (q · f0)

dXI
p (q · f0)













dV R
n (l · f0)

dV I
n (l · f0)






=
[

JH
np (l, q)

]







dXR
p (q · f0)

dXI
p (q · f0)







(A.15)

such that the components of the Jacobian are:

JG
mp (k, q) =






GR
m,p ((k − q) · f0) +GR

m,p ((k + q) · f0) −GI
m,p ((k − q) · f0) +GI

m,p ((k + q) · f0)

GI
m,p ((k − q) · f0) +GI

m,p ((k + q) · f0) GR
m,p ((k − q) · f0)−GR

m,p ((k + q) · f0)







JH
np (l, q) =






HR
n,p ((l − q) · f0) +HR

n,p ((l + q) · f0) −HI
n,p ((l − q) · f0) +HI

n,p ((l + q) · f0)

HI
n,p ((l − q) · f0) +HI

n,p ((l + q) · f0) HR
n,p ((l − q) · f0)−HR

n,p ((l + q) · f0)







(A.16)

which constitute the parts of the Jacobian originating from the nonlinear components

of the circuit.
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The gradients forming the linear components of the Jacobian include those from

the linear circuit and the piezoelectric harvester. In the linear circuit of our full-bridge

rectifier model, the currents into nodes 1 and 2 can be written from (A.2) as:

I lin
1 =

(

1
R

+ jωC
)

(V2 − V1)

I lin
2 =

(

1
R

+ jωC
)

(V1 − V2)

(A.17)

where gradients of these currents w.r.t. the voltages are:

dIlin
1

dV1
= −

(

1
R

+ jωC
)

dIlin
1

dV2
=
(

1
R

+ jωC
)

dIlin
2

dV1
=
(

1
R

+ jωC
)

dIlin
2

dV2
= −

(

1
R

+ jωC
)

(A.18)

from which it is easy to see that the higher harmonics produce large entries in the

Jacobian that may lead to scaling problems and ill-conditioning. For the piezoelectric

harvester equations the gradient of the generated current in the lumped model from

(A.4) can be found via:







(

k + jωc− ω2m
)

0

jωθ −1













du
dV

dI
dV






=







θ

jωCp






. (A.19)

For the finite element model, the gradient of the current w.r.t. the test voltage from

(A.8) is:

dI lin
piezo

dVtest
=
∂I lin

piezo

∂Vtest
+
∂I lin

piezo

∂Vpiezo

dVpiezo

dVtest
=

1

Rtest

(

1− dVpiezo

dVtest

)

(A.20)

where the derivative of the harvester voltage w.r.t. the test voltage can be found by

differentiating the system of finite element equations:

d

dVtest

(

K̃ũ = f̃
)

→ K̃
dũ

dVtest
=

df̃

dVtest
(A.21)

from which
dVpiezo

dVtest
is obtained from dũ

dVtest
and where df̃

dVtest
is a vector of zeros except

at the degree of freedom for Vpiezo. The bulk of the computational expense here comes

from the factorization of the finite element system. If this is stored for each of the
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(K + 1) harmonics, however, then the calculation of dũ
dVtest

is computationally inexpen-

sive, making the harmonic balance algorithm tractable with finite element models.

These linear components, for which the harmonics are independent of each other,

have Jacobian submatrices as:

Jlin
mn =

































































Re
(

dIlin
m

dVn

)

−Im
(

dIlin
m

dVn

)

Im
(

dIlin
m

dVn

)

Re
(

dIlin
m

dVn

)











, m = n











0 0

0 0











, otherwise

(A.22)

resulting in a 2x2 block diagonal structure. The nonlinear circuit component contri-

butions, on the other hand, are fully populated. In each of the submatrices, the sec-

ond row and column are empty because the imaginary part of the DC current/voltage

(k = l = q = 0) is always zero. These entries thus make the Jacobian singular, which

can be easily remedied by either removing those rows/columns or setting the entry on

the diagonal to 1.

In the case of the full-bridge rectifier model, the full Jacobian can be assembled

as:

J =











































Jlin
11 Jlin

12 0 JG
11 JG

12 0 0

Jlin
21 Jlin

22 0 0 0 JG
23 JG

24

0 0 Jlin
33 JG

31 0 0 JG
34

I 0 −I JH
11 0 0 0

I 0 0 0 JH
22 0 0

0 −I 0 0 0 JH
33 0

0 −I I 0 0 0 JH
44











































for







~V

~X






=











































V1

V2

V3

X1

X2

X3

X4











































(A.23)

where I is an identity matrix with a zero in the (2, 2) entry.
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A.3 Examples

The following examples are used to illustrate the correctness and versatility of the

present methodology in solving piezoelectric energy harvesting problems with nonlinear

circuits. The examples include a lumped parameter model and a finite element model

of the piezoelectric harvesting structure connected to full-bridge rectifier circuits.

A.3.1 Lumped parameter model

In the first example, a single degree of freedom lumped parameter model is used as

the piezoelectric harvester. This model is commonly used in the literature and provides a

direct comparison between this methodology and those results. The lumped parameters

are selected as k = 1.0 N/m, c = 9.55 kg/sec, m = 2.53E − 6 kg, θ = 1.25E − 3 N/V,

Cp = 1.2E − 6 F so that the resulting non-dimensional parameters are ωsc = 100 Hz,

ke = 1.14, and ζ = 0.03, which correspond to the strongly coupled case of Shu and Lien

[140]. A force acting on the mass actuates the mechanical vibration. The diodes in the

circuit are modeled with the physically relevant parameters: Isat = 18.8E − 9 A, η = 2,

and δ = 26 mV.

To investigate the mechanical and electrical responses of the model, analyses for

different frequency and resistance values as well as force amplitude are performed. The

normalized driving frequency range is Ω = 0.8 to 1.8 and the normalized resistance,

defined as r = CpωscR, ranges from r = 10−4 to 104. At each frequency and resistance

point a series of force values from Y0 = 0.25E−3 N to 10.0E−3 N with steps of 0.25E−3

N are used starting with the lowest value and with each successive load increment

starting the harmonic balance algorithm at the previous solution, essentially making it

a continuation method. 10 harmonics were used for estimation of the waveforms in the

algorithm, with a convergence criterion of 10−8 in the residual norm (Algorithm A-1,

step 14). For this set of parameters, it took on average 4-5 iterations of the Newton
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algorithm to converge for each load step. For each call of the harmonic balance algorithm

the DC component of the converged rectified voltage Vrect and displacements for each

harmonic are recorded, from which normalized power P̄ and normalized displacement

ū are calculated as:

P̄ =

V 2
rect

R

Y 2
0

ωscm

, ū =
|u|
Y0
k

. (A.24)

As a check for waveform convergence, frequency and resistance sweeps with K = 20

harmonics were performed which revealed errors in the harvesting voltages of less than

1%.

The results of this analysis can be seen in Figure A.3, which shows a case for

low force at 0.25E − 3 N and at high force at 10.0E − 3 N. Also included is the ana-

lytical solution from Shu and Lien [140], which has no dependence on force. The most

prominent difference between low and high forces, other than the power magnitudes, is

the presence of two localized optimal frequency/resistance pairs in the high force case.

This is a phenomenon noted by Shu and Lien [140], although in their study both the

peaks had the same power harvesting value, which is not the case in the harmonic bal-

ance results. The peak near short circuit resonance produces less power than the other

peak, which occurs near open circuit resonance. By artificially reducing the thermal

voltage for the diode model (i.e. modeling the diode as more ideal), it was found, but

not shown here, that both peaks approached the analytical solution provided by Shu

and Lien [140]. This indicates that the lower power produced at the peak near short

circuit resonance is a direct result of a more accurate diode model. A comparison of the

locations and values for the power peaks in these three cases is shown in Table A.2.
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Figure A.3: Contour plots of normalized harvesting power for the lumped parameter

model. (a) Low force, (b) high force, and (c) analytical solution from Shu and Lien

(2006).

Table A.2: Comparison of peak power location and value.

Analytical FE - High force FE - Low force

Peak 1 Peak 2 Peak 1 Peak 2 Peak 1

Ωopt 1.03 1.49 1.01 1.51 1.51

ropt 0.0617 17.4 0.0631 15.9 20.0

P̄opt 2.08 2.08 1.22 2.01 0.919

An interesting phenomenon that can only be realized using the present method
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is found upon inspection of the displacements experienced by the lumped parameter

model. The model, being fully coupled to the circuit, receives feedback from the circuit

that creates a structural response. For example, although the force upon the structure

occurs only at one frequency, the harmonics created in the voltage and current signals

cause the piezoelectric structure to act as an actuator, thereby creating displacements

and vibrations at the harmonic frequencies. This is a phenomenon that has not been

shown previously because of shortcomings caused by diode ideality assumptions of other

models. The normalized displacement response as functions of the driving frequency

and resistance are shown in Figure A.4 for the displacements occurring at the driving

frequency itself f0 and at the second harmonic 3f0. As was the case for the harvested

power, the low and high force responses at the driving frequency are quite different

with a single displacement mode for the low force case and two modes for the high

force case. The normalized displacement responses for the second harmonic, however,

show some unexpected and peculiar behavior. In the low force case the response as

a function of driving frequency is similar, but the response of the second harmonic is

largest for low resistances, which is opposite from the driving frequency response. In the

high force case, on the other hand, the second harmonic behavior seems to have little

connection with the driving frequency response. Although the magnitudes of the second

harmonic responses are much lower than the driving frequency responses, the excitation

of structural modes at that frequency or other harmonics could be detrimental to the

system. The proposed analysis method captures these effects and allows accounting for

them in the design process.
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Figure A.4: Contour plots of normalized displacement for the lumped parameter model.

(a) Low and (b) high force response at the driving frequency f0. (c) Low and (d) high

force response at the second harmonic 3f0.

A.3.2 Finite Element model

In the second example of the presented methodology a finite element model is

considered as the piezoelectric harvester. The model setup, shown in Figure A.5, consists

of a 10 cm x 10 cm square plate with a piezoelectric layer of thickness 0.2 mm surrounded

by negligibly thin electrodes on top of an aluminum substrate of 1.0 mm thickness. The

force on the plate is actuated along a 4 mm middle section of the left edge in the

direction normal to the plate. The material properties of the piezoelectric (PZT-5H)

and aluminum substrate are provided in Table A.3. Mass proportional damping of 2%

at 714.5 Hz is also included in the model. The finite element model consists of a mesh
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of 25 x 25 layered composite piezoelectric plate/shell elements. The circuit is the same

as before.

Figure A.5: Setup of piezoelectric harvester finite element model.

Table A.3: Material properties used in finite element example.

Mass density Stiffness properties Piezoelectric properties

Piezoelectric ρ = 7500 kg/m3 c11 = c22 = 127 GPa e31 = −6.62N/C

(PZT-5H) c12 = 80.2 GPa e33 = 23.2N/C

c13 = c23 = 84.7 GPa ǫ33 = 1.28E − 8 F/m

c33 = 117 GPa

Aluminum ρ = 2700 kg/m3 E = 73.0 GPa, ν = 0.33

Similar to the previous example, the harvesting power as a function of frequency

and resistance is sought. Here, however, normalized parameters are not used because

they are not simple when using a finite element model. The driving frequency is varied

from f0 = 650 Hz to 760 Hz while the harvesting resistance is varied from R = 10−4 Ω

to 104 Ω. The force magnitude is varied from Y0 = 2.5E − 2 N to 2.0 N stepping by

2.5E−2 N, again creating a continuation approach. In the harmonic balance algorithm,
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K = 20 harmonics were used and a convergence criterion of 10−8 in the residual norm

was used. The harvesting power is calculated via P = V 2
rect/R.

To give an idea of what the structural response looks like for this finite element

model, a broadband frequency sweep of average dissipation power is performed for the

finite element model with only a 100 Ω resistor as the external circuit rather than

the full-bridge rectifier. The voltage frequency response function for this linear system

is shown in Figure A.6 along with a contour plot of average dissipation power as a

function of both frequency and resistance. Figure A.7 then shows the results of the

full-bridge rectifier circuit analysis for low (Y0 = 7.5E − 2 N) and high (Y0 = 2.0 N)

force magnitudes. The difference between the linear and nonlinear cases is clear. In the

linear resistive system a very small peak shows up, while in the full-bridge system, the

peak power is much broader in its range of effectiveness for both low and high forcing.

As was found for the lumped parameter model, in the nonlinear analysis the location

of peak power shifts and changes shape with increasing load. Noticeably a second peak

did not appear for the finite element model, although this is not necessarily unexpected

as the system dynamics are much more complex.
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Figure A.6: (a) Peak voltage frequency response function (R = 100 Ω) and (b) contour

plot of average dissipated power as a function of frequency and resistance for a linear

resistive system.
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Figure A.7: Contour plots of the harvesting power for the finite element model for (a)

low force and (b) high force.

A.4 Conclusions

A methodology for accurately analyzing the electromechanical response of piezo-

electric harvesting structures connected to nonlinear harvesting circuits is developed.

Through the examples it has been shown that the nonlinear effects of a full-bridge

rectifier circuit do significantly change the electrical response of piezoelectric energy

harvesting systems when compared with currently available analytical models. On the

other hand, the effects of higher order feedback are generally negligible when compared

to the primary response at the driving frequency. In sensitive systems, however, this

may not be true and may pose a significant problem in systems where unwanted modes

could be excited. Thus, special design considerations may be necessary with the use of

nonlinear circuits. As a result, this analysis methodology significantly improves upon

existing analysis techniques and can provide and valuable information that is otherwise

unavailable for the design and response of piezoelectric energy harvesting systems.


